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Abstract The valuation of bidders for an object consists of a common value component (which
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1 Introduction
Bidding preparation for auctions usually involves evaluating multiple characteristics. This paper delves
into which characteristics bidders should gather information about and how such decision is influenced
by the auction format in cases wherein people cannot take into account all existing information.
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These issues are relevant to, for example, corporate takeovers, in which acquiring firms have access
to a variety of information about a target company. This information encompasses the R&D activities
and the book value. A reasonable assumption is that firms cannot perfectly process or uncover all
existing information, and are thus driven to select elements to focus on before bidding takes place.
Should an acquiring firm conduct research on aspects that are specific to them, such as their R&D
overlap? Or should they focus on factors that also matter to other acquiring firms, such as the book
value of a target?

Another example are resource rights auctions for oil fields or timber. Each bidder derives the
same monetary value from an unknown volume of oil or timber on a site, and this value stems from
the market price. Bidders may incur different costs in extracting the resources from a site because of
the use of different drilling or logging technologies and variances in experience levels. I inquire into
whether a bidder prefers to perform an exploratory drilling to learn about oil volume (i.e., the common
component) or to learn about the costs of extracting the resource through estimations of the drilling
costs specific to him (i.e., the private component).

Buying real estate is yet another case that involves evaluating a variety of attributes prior to
bidding. These attributes include the costs of maintaining a property, local taxes, mortgage rates, the
convenience of travel to work, and personal preference for a property. Do bidders prefer to acquire
information on the qualities of a property that are pertinent to all bidders, such as maintenance costs?
Or would they rather examine characteristics that are uniquely related to them, such as the convenience
of traveling to work from a property.

The contribution of this paper is to investigate the incentives provided by a variety of auction
formats regarding information selection. I demonstrate that bidders prefer to learn about their private
components in the second price auction (SPA) which is commonly used in the examples1 described
above. I also analyze incentives to selecting information in a first price auction (FPA) and an all-pay
auction.2

The novelty of this paper lies in its illumination of which random variables bidders seek to learn
(information selection) instead of what level of accuracy of information they favor about a given real-
valued random variable (information acquisition). I isolate incentives for learning about the signal of
an opponent: Holding the level of accuracy constant, do bidders prefer their private information to
be dependent (information about a common component) or independent (information about a private
component)?

The independent private values setting (IPV) and the interdependent values setting (IntV) lead
to different theoretical predictions and vary significantly in their implications for auction design and
policy.3 The literature on auctions usually assumes either IPV or IntV setting at the outset of the
analysis. In addition, identifying the valuation setting on the basis of data is often challenging if not

1See Porter (1995) for a survey of oil and gas lease auctions and Hendricks and Porter (2014) for an
analysis of the auction mechanisms in selling resource rights in the U.S. See Gentry and Stroup (2017)
for an analysis of auctions and negotiation procedures commonly used in mergers and acquisition, and
Chow and Ooi (2014) for real estate land auctions.

2As I concentrate on the case of two bidders, my results also hold for the open English auction
(equivalent to the SPA) and the Dutch auction (equivalent to the FPA) (Milgrom and Weber, 1982).

3In the IPV setup, each bidder’s private information matters only to him; in the IntV setup, a
bidder’s estimate of the object depends on the private information of other bidders.
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impossible.4 By restricting the ability of bidders to learn about more than one attribute, I study which
value setting arises endogenously.

For a brief outline of the model, consider two bidders who compete for one indivisible object in a
SPA. They share the same common component (e.g., the book value of a firm) and have independent
private value components (e.g., match-specific R&D overlap). The valuation of each bidder is the sum
of two value components about which they are uninformed. Bidders select between learning about a
common or a private component. Information selection is simultaneous and covert. Considering both
components is infeasible.5

Learning about the common or the private component has equal accuracy. In a single agent prob-
lem, an agent would be indifferent between learning about either component, as the two experiments
are equally informative about the total value of the object. Yet, in the strategic context of an auction
information about the object plays a dual role. Beyond containing information about the object’s
worth, it is also informative about the signal of the opponent and his bid. Moreover, a rational bidder
conditions his estimate of the object not only on his own information, but also on what he learns
from the event of winning. Being the highest bidder when the opponent learns about the common
component implies that the opponent has a low signal realization. This is bad news for the expected
value of the object. In equilibrium, a bidder shades down his bid due to this so-called winner’s curse.

In my model, the extent of the winner’s curse and the interdependence between bidders’ information
are endogenous and depend on which value component bidders learn about. The signals of bidders
become more affiliated if they learn about the common component. The winner’s curse exacerbates. If
other bidders learn only about their private component, their information bears no relevance for other
bidders and there is no winner’s curse. Two standard valuation settings are nested in my model. An
IPV setting arises if both bidders learn only about their private components. A pure common value
setting emerges if both bidders learn only about the same common component.

The result for the SPA with two bidders is that in any symmetric equilibrium, information selection
is unique: There is only learning about the private component, and an IPV setting arises endogenously.
The SPA induces the ex-ante efficient outcome. No resources are wasted by learning about the common
component which is irrelevant for efficiency, and the object is allocated to the bidder with the highest
estimate of his private component. This result holds in a general class of utility functions.

In the SPA, a bidder could always find a strictly profitable deviation by decreasing interdependence
in private signals. The approach is to find a deviation strategy that keeps the expected gain and winning
probability constant, while strictly decreasing the expected payment. For a sketch of the argument,
consider a candidate equilibrium in which both bidders learn only about the common component and
have the highest degree of interdependence in private signals. Then, the following deviation is strictly
profitable for a bidder: Learn about the private component, but bid as if it were a signal about the
common component. This strategy eliminates interdependence in private signals but employs the same

4See Laffont and Vuong (1996) for a general discussion of identifying the value setting in the FPA,
and Athey and Levin (2001) for timber auctions.

5Learning about a component might involve some actuarial calculations or an experiment, e.g.,
exploratory drilling. I analyze a scenario where such an experiment is non-divisible, and analyzing
both components half-way does not produce meaningful information: drilling half a hole, or calculating
only the first half of a cost-benefit analysis is not useful.
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bidding function as the candidate equilibrium for tractability.
The expected payment conditional on winning from such a deviation strategy is strictly lower. The

higher the interdependence, the higher the distribution of the second order statistic of the opponent’s
signal and his bid. By decreasing interdependence, the distribution of the second order statistic puts
more weight on lower bids, and expected payment strictly decreases.

The expected gain from this deviation is the same as in the candidate equilibrium. For every
realization of the total value of the object, the probability of placing the highest bid is the same with
the candidate equilibrium and the deviation strategy. However, given a total value for the object,
winning probability for different compositions of the two components changes with deviating. In the
candidate equilibrium, as both bidders learn about the common component, they win with equal
probability for each realization of it. In the deviation strategy, a deviating bidder is more likely to
win in states that involve a high private and a low common component, and vice versa. The existence
of a deviation strategy that leads to the same expected gain for a strictly lower payment pushes the
incentives of bidders in the SPA towards independence, and yields a unique information choice in
equilibrium of the SPA.

In a FPA, incentives to select information are opposite to the SPA. As a winning bidder pays his
own bid, he does not want to "leave money on the table" by overbidding his opponent by too much.
Having a better estimate of the opponent’s bid can reduce the expected payment conditional on a
win as it reduces the first order statistic of winning bids. Therefore, increasing the dependence of the
own signal with the signal of the opponent induces a lower payment if both follow the same bidding
function. I show that the ex-ante efficient equilibrium in which bidders learn only about their private
component is not robust: After introducing a slight degree of correlation between the common and the
private component, bidders prefer more interdependence by learning about the common component.

In addition, I consider information selection in all-pay auctions. For the general case of many
bidders, bidders learn only about the private component and an IPV setting arises endogenously. This
is because by deviating to the private component, bidders can always guarantee themselves a weakly
higher winning probability at every total value of the object, for the same expected payment.

Section 1.1 describes the related literature. Section 2 introduces the model and the informational
framework. The analysis in Section 3 shows the consequences of information selection on the joint signal
distributions (Section 3.1) and on the value of the object (Section 3.2). I combine those observations in
Section 4 to solve for an equilibrium of the SPA. Then, I show that the results generalize to a broader
class of utility functions in Section 5.1, and discuss the effect of more than two bidders in Section 5.2.
Finally, I analyze the FPA in Section 6.1, and the all-pay auction in Section 6.2.

1.1 Related Literature
In the classic literature in Auction Theory, the distribution of private information of bidders is exoge-
nous and does not depend of the choice of the auction format.6 In their seminal work, Milgrom and
Weber (1982) introduce a theory of affiliation in signals, and derive the equilibrium for the SPA, the

6For an IPV setup, see Vickrey (1961) and Riley and Samuelson (1981). For a common value model,
see Wilson (1969) and Milgrom (1981), and Milgrom and Weber (1982) for a general interdependent
setup with affiliated signals.
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FPA and English auction. The all-pay auction for affiliated signals has been analyzed by Krishna and
Morgan (1997) and recently by Chi et al. (2017).

The literature on information acquisition in auctions7 endogenizes the private information of bid-
ders, by asking how much costly information they seek to acquire.8 Bidders choose the informativeness
of their signal about a single-dimensional payoff relevant variable, usually for a fee that increases in
the amount of information it contains.9

Persico (2000) considers costly information acquisition in an interdependent value model in the
FPA and the SPA. Before bidding, bidders choose the accuracy of their signal about a one-dimensional
random variable. Accuracy is a statistical order on the informativeness of an experiment by Lehmann
(1988).10 In the model of Persico (2000), learning with higher accuracy has two effects: first, the
information about the own valuation becomes more precise; second, bidders obtain a better estimate
of the signals of other bidders. Therefore, a higher accuracy inextricably links these two effects. Persico
(2000) shows that incentives for information acquisition are stronger in the FPA than in the SPA.

In contrast to Persico (2000), my model fixes the effect of informativeness about the object, and
concentrates on choosing more or less correlation with the opponent. In my model, there are two
signals available about two payoff-relevant variables. Accuracy of information is fixed and equal in
each available signal. In contrast to Persico (2000), bidders in my model have to select the variable
about which they prefer to learn. The results in Persico (2000) are of a relative nature: given a level of
accuracy acquired in the SPA, the level of accuracy in a FPA is higher.11 In contrast, my framework
provides an absolute prediction: about which component do bidders learn.

In Bergemann et al. (2009), the value of an object is a weighted sum of everybody’s payoff type.
Information acquisition is binary: either learn perfectly about the own payoff-type, or learn nothing.
Note that in this formulation, learning cannot introduce any dependence between the signal of bidders,
as all payoff types are distributed independently (although they matter to other bidders). With positive
interdependencies in payoff types, Bergemann et al. (2009) show that in a generalized Vickrey-Clarke-
Groves mechanism12 bidders acquire more information than would have been socially efficient.

In the IPV setup of Hausch and Li (1991), the SPA and FPA induce equal incentives to acquire

7Endogenous information acquisition has been analyzed in other areas of Economics. E.g., see
Bergemann and Välimäki (2002), Crémer et al. (2009), Shi (2012) and Bikhchandani and Obara
(2017) in optimal and efficient mechanism design, Martinelli (2006) and Gerardi and Yariv (2007) in
committees, Crémer and Khalil (1992) and Szalay (2009) in principal-agent-settings, and Rösler and
Szentes (2017) in bilateral trade.

8In the context of auctions, information acquisition has been modeled in an IPV model (see e.g.
Hausch and Li, 1991; Compte and Jehiel, 2007; Gretschko and Wambach, 2014), and in an IntV
framework (see e.g. Persico, 2000; Bergemann et al., 2009).

9Informativeness criteria include Blackwell sufficiency (Blackwell, 1951), accuracy (Persico, 2000;
Lehmann, 1988), dispersion measures (Ganuza and Penalva, 2010), or deciding whether to learn per-
fectly or nothing about a payoff relevant variable (e.g. Bergemann et al., 2009). Better informativeness
usually comes at higher costs.

10The concept of accuracy of of a statistical experiment is established by the name of ‘effectiveness’
by Lehmann (1988) in the statistical literature.

11This holds under appropriate conditions on the marginal costs for increasing accuracy.
12See Dasgupta and Maskin (2000) for a generalized Vickrey-Clarke-Groves mechanism in the context

of auctions, and Jehiel and Moldovanu (2001) for a general mechanism design setting with externalities
in information and allocations.
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information about the one-dimensional value. Stegeman (1996), showing that the incentives to acquire
information in an IPV setting coincides in FPA and SPA, and with the incentives of a planner, making
information acquisition efficient.

The above literature on information acquisition in auctions considers covert information acquisi-
tion. That is, bidders do not know how much information their competitors acquire before the auction.
Another strand of the literature also analyzes overt information acquisition, where bidders observe how
much information others acquired before bidding. Hausch and Li (1991) show that the SPA and the
FPA induce different incentives to acquire information when information acquisition is overt, and rev-
enue equivalence fails. Compte and Jehiel (2007) show in an IPV setup that an ascending dynamic
auction induces more overt information acquisition and higher revenues than a sealed-bid auction.
Hernando-Veciana (2009) compares the incentives to overtly acquire information in the English auc-
tion and the SPA, when bidders can learn about a common component or about a private component.
In his model, it is exogenous which component information acquisition is about, while in my model, I
endogenize the decision of information selection between the two components.

My paper also relates to the literature on information choice in games with strategic complemen-
tarities or substitutes, such as Cournot competition, beauty contests and investment games. Hellwig
and Veldkamp (2009) ask whether bidders want to coordinate on the same or on different information
channels about the same one-dimensional state of the world in a beauty contest game. They show
that the choice of information relates to the complementarity of actions in their model: if actions are
strategic complements, agents want to know what others know. If actions are strategic substitutes,
agents want different information channels.

In a beauty contest game in Myatt and Wallace (2012), agents to choose between multiple infor-
mation channels about a common state variable. Agents choose how clearly (endogenous noise) to
listen to which of many available signals, that vary in accuracy (exogenous noise).

Gendron-Saulnier and Gordon (2017) fix the informativeness of signals, similar to my approach.
In their paper, agents have the choice between multiple information channels, that all have the same
informativeness: they are all Blackwell sufficient for each other. Information channels vary in the level
of dependence they induce between the signals of agents. Actions exhibit strategic complementarities,
as in the framework of Hellwig and Veldkamp (2009) and Myatt and Wallace (2012).

There are two major differences between my model and the three papers Hellwig and Veldkamp
(2009), Myatt and Wallace (2012) and Gendron-Saulnier and Gordon (2017):13 bidding functions do
not exhibit strategic complementarities in the auction formats in my model (see e.g. Athey, 2002) which
leads to a fundamentally different strategic problem. Further, in the above models, all channels contain
information about the same single-dimensional payoff-relevant random variable (the one-dimensional
state of the world). In contrast, in my model bidders choose about which component of the multidi-
mensional state of the world to learn. Learning about their private component leaves them with an
independent signal realization, irrespective of the information acquired by their opponent.

13See also Yang (2015) for flexible information acquisition in investment games with strategic com-
plementarities and Denti (2017) for an unrestricted information acquisition technology in potential
games.
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2 Model

2.1 Payoffs
There are two risk-neutral bidders, indexed by i ∈ {1, 2} who compete for one indivisible object. The
reservation value of the auctioneer and the outside options of the bidders are zero.

The valuation for the object of bidder i, denoted by Vi ∈ R+, depends on two attributes: a common
value component S distributed on [0, 1], that is equal for all bidders, and a private value component
Ti distributed on [0, 1], the idiosyncratic taste parameter of bidder i.

The the common value component and the private value components {S, T1, T2} are drawn mutu-
ally independent and identically, each with distribution function H(·), which admits a density function
h(·).14 That is, for all i ∈ {1, 2}, m ∈ [0, 1], it holds that H(m) = Pr(S ≤ m) = Pr(Ti ≤ m). The
prior expected value of the components coincide: E [S] = E [Ti].

The utility function for each bidder i is

Vi = S + Ti.

Note that the private component of the other agent j 6= i has no impact on the valuation of bidder
i. In Section 5.1, I extend the class of admissible utility functions.

Fix a total value realization vi. Any si ∈ [max{vi− 1, 0},min{vi, 1}] and Ti = vi− s is a feasible15

combination of the components for this particular vi. As the joint events (S = s, Vi = vi) and
(S = s, Ti = vi− s) are the same, the density function of the random variable Vi, the overall valuation
of bidder i, is

hV (vi) :=
∫ min{vi,1}

max{vi−1,0}
h(s)h(vi − s)ds.

2.2 Information Structure
Neither the auctioneer, nor the bidders know the realization of any of the value components. Instead,
bidders engage in information gathering about their valuations. The information choice of bidder i is
one of information selection: about which component should he learn.

Bidders choose one experiment Xi which can be one of two random variables: bidders can learn
either a random variableXT

i that is informative about their private component Ti, or a random variable
XS

i that is informative about the common component S. Each signal Xi ∈ {XT
i , X

S
i } is uninformative

about the other attribute. Both signals XT
i and XS

i consist of the same compact support [0, 1] and a
marginal probability distribution, conditional on the realization of its attribute {S, Ti}. The marginal
distribution of the random variable XT

i or XS
i of bidder i has a cumulative distribution function

FT (·|r) or FS(·|r) for r ∈ [0, 1], conditional on the state Ti = r or S = r.

14The assumption of full support and existence of a density function h(·) is for clarity of the presen-
tation. Results hold if there are only two realizations in the support.

15The interval has to account for the fact that each component is distributed with support [0, 1].
For example, if vi = 1.3, the common component needs to be at least si = max{vi − 1, 0} = 0.3 for
value vi to realize.
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Assumption. For K ∈ {S, T}, for all r ∈ [0, 1], the distribution FK(xi|r) admits a density fK(xi|r),
such that:

(A1) ∀xi ∈ [0, 1] : fS(xi|r) = fT (xi|r) =: f(xi|r).

(A2) ∀x′i > xi, fK(x′
i|r)

fK(xi|r) strictly increasing in r.

Assumption A1 implies that an experiment has the same conditional distribution function whether
applied to S or Ti. As all components are distributed identically, Assumption A1 implies the same in-
formativeness on each available signal.16 For clarity, I sometimes use the superscripts in the exposition
to clarify about which component the signal is drawn.

The signalsXS
i andXT

i satisfy a strong monotone likelihood ratio property (MLRP) in Assumption
A2 which broadly speaking states that higher signal realizations are more indicative of higher states.
Moreover, I assume that f(·|r) is continuously differentiable in xi for all r.

Bidders choose the probability ρi of applying the signal on the common variable S. The information
selection variable ρi ∈ [0, 1] is a mixed strategy:17 With probability ρi, bidder i performs an experiment
about S. With probability 1 − ρi, bidder i learns about attribute Ti. Let ρ = {ρ1, ρ2} be the vector
of information selection variables.

Due to the following assumptions, the private signals of bidders can only be interdependent via
learning about the common variable S:

Assumption (CI). XS
i |= XS

j | S.

Assumption (IN). XT
i |= XT

j , and XT
i |= XS

j .

Assumption CI is a conditional independence assumption of XS
i and XS

j on S. Together with
Assumption A2 (stating that XS

i and S are affiliated) this implies that the random variables XS
1 and

XS
2 are affiliated.18 According to Assumption IN, if one bidder learns about his private component by

observing XT
i , his signal is independent from both signal XS

j and XT
j of his opponent j.

Let FS(x) := Pr(XS
i ≤ x) =

∫ 1
0 F

S(x|s)h(s)ds be the unconditional distribution function of
a bidders’ private signal when he learns about component S, and let fS(x) be the corresponding
density. Analogously, let FT (x) := Pr(XT

i ≤ x) =
∫ 1

0 F
T (x|t)h(t)dt be the distribution when applying

the experiment on Ti, and fT (x) the corresponding density. Note that FS(x) = FT (x), due to the
symmetry of signals and components.

After bidder i chooses what to learn about, he observes signal Xi with the following unconditional
distribution function:

F (x) := Pr(Xi ≤ x|ρi) = (1− ρi)FT (x) + ρiF
S(x).

The unconditional distribution F (x) is not a function of ρi, as applying the signal to both com-
ponents results in the same distribution of signals due to FS(x) = FT (x).

16I abstract away from bidders choosing to learn about a component only because it provides more
information. Instead, the focus of this paper is to find what dependence bidders prefer between their
signal given the same informativeness.

17A bidder always observes which experiment was performed for any randomization.
18For a formal definition of affiliation, see Appendix A.1, Definition 5. The affiliation between XS

i

and XS
j follows from combining CI with MLRP.

8



Observation 1. The unconditional distribution function of a signal about each component coincides
for any information selection variable ρi: ∀x ∈ [0, 1], FT (x) = FS(x) = F (x).

The next binary example is useful to provide intuition in the following analysis.

Example 1. Let s ∈ {0, 1} and ti ∈ {0, 1}, each with equal probability 1
2 . Thus, Pr(vi = 0) = Pr(vi =

2) = 1
4 , and Pr(vi = 1) = 1

2 .
For K ∈ {S, T} and xi ∈ [0, 1], the signal XK

i has conditional density fK(xi|0) = 2 − 2xi and
fK(xi|1) = 2xi. The unconditional signal distribution is F (xi) = xi and the density is f(xi) = 1.

There are no costs associated with the information selection stage beyond the opportunity costs
of not learning about the other value component. The timing is as follows.

1. An auction format is announced.

2. Nature draws S, T1, T2.

3. Bidders simultaneously and privately select their information ρ := {ρ1, ρ2}.

4. Bidders privately observe their signal XS
i or XT

i .

5. The auction takes place.

Information selection is covert: bidders do not observe which channel others chose to learn about,
but make inference about it in equilibrium. Moreover, bidders select their information after the auction
format is announced. This enables an analysis of the incentives of various auctions on information
selection.

3 The Impact of Information Selection

3.1 Endogenous Correlation
With probability (1 − ρ1ρ2) at least one bidder observes a signal about his private attribute Ti and
signals are independent by Assumption IN. With the remaining probability ρ1ρ2, bidders observe
correlated signals about the same realization of the common attribute S. In this case, private signals
XS

i and XS
j are independent conditional on the common value realization s by Assumption CI.

Bidder i forms a belief about the distribution of his opponent’s signal, based on the source of his
own signal, XT

i or XS
i , and its realization xi ∈ [0, 1]. Bidder i does not know whether his opponent j

observed a signal about S or Tj , but draws inference if he expects his opponent to set ρj > 0, as the
following cumulative distributions show.

Let GT (xj |xi, ρj) := Pr(Xj ≤ xj |XT
i = xi, ρj) be the conditional cumulative distribution function

of the ‘source-free’ signal realization Xj , from the perspective of bidder i with a signal realization
XT

i = xi. The distribution function GT does not depend on ρi, as it already conditions on bidder
i having observed a signal XT

i about Ti. If a bidder learns XT
i , his signals contains no information
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about the other bidder due to Assumption IN. Therefore, using Observation 1, for all xi ∈ [0, 1] and
any information selection ρj ∈ [0, 1] of the opponent,

GT (xj |xi, ρj) = F (xj).

If bidder i learns about his common component via XS
i , his signal realization might bear infor-

mation about his opponent’s signal realization. Let GS(xj |xi, ρj) := Pr(Xj ≤ xj |XS
i = xi, ρj) be the

distribution function of the signal realization of bidder j 6= i, conditional on XS
i = xi.

GS(xj |xi, ρj) =(1− ρj)F (xj) + ρj

∫ 1

0

fS(xi|s)FS(xj |s)
f(xi)

h(s)ds.

The second summand accounts for the correlation in private information if the opponent j also
learns about the common component (with probability ρj). Then, signals are independent conditional
on S by Assumption CI.

3.2 Endogenous Value Setting
The degree of the winner’s curse is endogenous in my model. If the opponent of bidder i only learns
about his private component Tj , his information is irrelevant for bidder i. Winning at any bid does
not provide any further information for bidder i beyond his private signal realization and there is no
winner’s curse.

If the other bidder j learns about the common component, the event of winning contains informa-
tion about S for bidder i. If every bidder follows a symmetric and strictly increasing bidding function,
winning indicates that bidder j has a lower signal about S than bidder i. This is bad news for the
value of the object, and bidders shade their bid down to account for the effect of the winner’s curse,
to not overbid in case of a win.

Let bidder i observe a signal XK
i for K ∈ {S, T}. His expected value of the object to bidder i,

updated only based on his own signal realization is

E
[
Vi|XK

i = xi

]
=
∫
V
vih

K(vi|xi)dvi,

where hK(vi|xi) is the following probability density function of the value Vi for bidder i conditional
on his signal realization XK

i = xi about component K ∈ {S, Ti}:

hK(vi|xi) =



1
fS(xi)

∫ 1
0 f

S(xi|s)h(s)h(vi − s)︸ ︷︷ ︸
joint event

XS
i =xi,Vi=vi,S=s

ds if K = S,

1
fT (xi)

∫ 1
0 f

T (xi|t)h(t)h(vi − t)︸ ︷︷ ︸
joint event

XT
i =xi,Vi=vi,Ti=t

dt if K = T.
(1)

The following observation shows that any information selection leads to the same expected value of
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the object, conditional on that signal realization alone. This follows immediately from the symmetry
of the distributions of the value components S and Ti, H(m) = Pr(Ti ≤ m) = Pr(S ≤ m) and
the signals having the same density fT (xi|r) = fS(xi|r) for each realization xi ∈ [0, 1]. That is,
hS(vi|xi) = hT (vi|xi).

Observation 2. The object’s expected value conditional on signal realization xi coincides for both
signals XS

i and XT
i : ∀xi ∈ [0, 1], E

[
Vi|XS

i = xi

]
= E

[
Vi|XT

i = xi

]
.

Both available signals XS
i and XT

i have equal informativeness about Vi, as they lead to the same
posterior distribution over the total value. In equilibrium, bidders update about the value of the object,
conditional on their signal, and conditional on the event of winning. Being pivotal bears information
about the signal realization of the other bidder. The following expression is the value of bidder i after
observing an experiment about component K ∈ {S, T}, when the signal realization of the opponent is
Xj = xj , and the opponent selects ρj . For K ∈ {S, Ti},

vK(xi, xj |ρj) := E
[
Vi|XK

i = xi, Xj = xj , ρj

]
.

The above definition is based on a source-free signal realization Xj = xj of the other bidder, as
bidder i cannot observe whether it contains information about the common valuation S or the private
component Tj of his opponent. However, it conditions on the information selection strategy of the
other bidder, ρj . This is to capture that information selection is covert. While the choice of ρj is
unobservable to bidder i, he draws correct inference about it in equilibrium.

The following two value settings are nested in my model:

1. Independent private values (IPV). If ρ1 = ρ2 = 0, private signals XT
1 and XT

2 are inde-
pendent. The expected value of bidder i does not depend on the signal of bidder j:

vT (xi, xj |ρj = 0) = E
[
Vi|XT

i = xi

]
= E

[
Ti|XT

i = xi

]
+ E [S] .

2. Common values/ mineral rights model (CV). If ρ1 = ρ2 = 1, expected utility of the
bidders is symmetric in the two private signals XS

1 and XS
2 :

vS(xi, xj |ρj = 1) = vS(xj , xi|ρj = 1) = E [Ti] + E
[
S|XS

i = xi, X
S
j = xj

]
.

For example, fix the information choice of bidder j at ρj = 1 such that he always learns his signal
XS

j . If bidder i learns signal XS
i = xi about the common component, his expected value is as described

in above CV setting. If bidder i instead learns about his private component via observing XT
i , his

estimate of the object when his opponent has signal realization XS
j = xj is

vT (xi, xj |ρj = 1) = E
[
Ti|XT

i = xi

]
+ E

[
S|XS

j = xj

]
.

Let bidder j select ρj = 1 and learn about the common component via XS
j and consider Example

1. Figure 1 depicts the expected value of the object for bidder i, when he expects his opponent to
have the same signal realization as himself, XS

j = x. The blue dashed line is the expected value

11



Figure 1: Expected valuation of bidder i in Example 1, if he chooses to learn about component K ∈ {S, Ti}, the opponent
learn about S, and both bidders have the same signal realization xi.

vS
i (xi, xi|ρj = 1) for bidder i in the CV framework with signal XS

i = xi. The green solid line is
bidder i’s expected value vT (x, x|ρj = 1) if he learns about his private component. Expected value is
increasing in the signal realization.19 The function vS(x, x|ρj = 1) reacts slower to a change in the
signal x than vT (x, x|ρj = 1). This is because if a bidder learns about his private component, there is
no dependence with his opponent, and therefore, no redundancy in private information. Receiving a
low signal is worse news (and receiving a high signal is better news), if it contains information about
the private component.

4 Second Price Auction
In this section, two bidders are competing for one indivisible object in a SPA, with no reserve price
and an equal tie-breaking rule.20 If the random vector ρ is exogenous and common knowledge, that is,
when there is no information selection stage, the model reduces to Milgrom and Weber (1982). Under
endogenous and covert information selection, bidders optimize their own information choice and make
inference about the information source of their opponent in equilibrium, as it has an effect on the
winning probability, the expected payment and the value of the object conditional on winning.

I consider the following class of equilibria:

Definition 1 (Symmetric Bayes Nash equilibrium)
In a symmetric Bayes Nash equilibrium, bidders

• select the same ρi = ρ∗,
19The expected value vK(xi, xj |ρj = 1) of bidder i with own signal xi and given the signal realization

of the opponent xj is non-decreasing in both arguments. This follows from affiliation of XK
i with XS

j

(Milgrom and Weber, 1982).
20For N = 2 bidders, the sealed bid SPA and the open English auction are strategically equivalent

(see Milgrom and Weber, 1982). Furthermore, due to the assumption of strictly increasing bidding
functions and no atoms in signal distributions, the probability of a tie is zero.
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• after observing XS
i = x, bid βS(x),

• after observing XT
i = x, bid βT (x),

where bidding functions βS(x) and βT (x) are pure and strictly increasing in x, and together with ρ∗

constitute mutually best responses.

In the remainder of the paper, the term "equilibrium" refers to an object that satisfies the above
definition. Let CE := {ρ∗, βS , βT } be a candidate equilibrium. The expected utility of bidder i from
learning about component K ∈ {S, Ti} and bidding with βi, who is facing an opponent who plays CE,
is denoted by EU(K,βi|CE). It can be separated into his the expected gain EG(K,βi|CE) minus his
expected payment EP (K,βi|CE):

EU(K,βi|CE) := EG(K,βi|CE)− EP (K,βi|CE). (2)

First, consider the expected gain of bidder i. In the candidate equilibrium, bidder i expects his
opponent to learn XT

j and bid according to βT with probability (1 − ρ∗); in this case, the expected
gain of bidder i is in line 3. With the remaining probability ρ∗, his opponent learns a signal XS

j , bids
according to betaS . In this case, the expected gain of bidder i is depicted in line 4.

EG(K,βi|CE) :=(1− ρ∗)
∫
V
vi Pr(i wins|vi, X

K
i , βi, X

T
j , β

T
j )hV(vi)dvi︸ ︷︷ ︸

Expected gain of bidder i when j learns XT
j

(3)

+ ρ∗
∫
V
vi Pr(i wins|vi, X

K
i , βi, X

S
j , β

S
j )hV(vi)dvi︸ ︷︷ ︸

Expected gain of bidder i when j learns XS
j

. (4)

Second, consider the expected payment of bidder i. In the SPA, if bidder i wins he pays the bid
of his opponent j. Consider the distribution of the signal of the opponent j, conditional on bidder i
having a higher signal. This distribution depends on both the information choices of the bidders and
their bidding functions.

Let L ∈ {S, Tj} be the component about which bidder j learns signal XL
j and bids according to

βL
j . Whenever it is well-defined21, define the cumulative distribution of bidder j’s signal realization

conditional on bidder i winning (when learning XK
i and bidding βK

i ):

HK(xj |βi, β
L
j , X

L
j ) := Pr(XL

j ≤ xj |βi(XK
i ) ≥ βL

j (XL
j )). (5)

Let hK(xj |βi, β
L
j , X

L
j ) be the corresponding density, if it exists. With this information choice K

and L, and bidding functions βi, β
L
j , the overall expected payment of bidder i is:

EP (XK
i , βi|XL

j , β
L
j ) := Pr(βi(XK

i ) ≥ βL
j (XL

j ))
∫ 1

0
βL

j (xj)dHK(xj |βi, β
L
j , X

L
j )︸ ︷︷ ︸

payment conditional on winning

. (6)

The first factor is the overall probability of bidder i winning. The second factor is the expected

21That is, if the probability of bidder i winning is non-zero with βi(XK
i = 1) > βL(XL

j = 0).
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bid of j that bidder i has to pay conditional on winning.
Bidder i does not observe which signal his opponent learns, but expects him to select ρ∗ in the

candidate equilibrium. Based on this inference, bidder i’s expected payment with information choice
K and bidding function βi is

EP (XK
i , βi|CE) = (1− ρj)EP (XK

i , βi|XT
j , β

T
j ) + ρjEP (XK

i , βi|XS
j , β

S
j ). (7)

The first summand accounts for the possibility of the opponent having observed signal XT
j times

the expected payment in this case. The second summand is the expected payment when facing an
opponent with signal XS

j , weighted with the probability ρj of the occurrence of this event.

4.1 Information Selection in Equilibrium
The next theorem establishes the main result for the SPA. It shows that there is no learning about
the common component in any equilibrium.

Theorem 1. Information selection is unique in equilibrium, ρ∗ = 0.
There exists an equilibrium in which βT (x) = E

[
Vi|XT

i = x
]
.

All proofs are in the appendix, unless stated otherwise. In the remainder of the section, I derive
auxiliary results necessary to prove the above theorem.

First, consider any candidate equilibrium in which ρ∗ > 0. Our goal is to establish that there
exists a profitable deviation, as soon as there is positive dependence via learning about the common
component. In general, a brute-force maximization approach to find the best response to a candidate
equilibrium is a fruitless undertaking. This is because simultaneosly varying the information source
and bidding function has adverse implications on the winning probability, expected payment and
the posterior value of the object conditional on a win, and the overall effect on the payoff becomes
intractable. Unless bidders follow the same bidding functions that allow some form of comparability,
there is little that can be said about which strategy leads to a higher overall utility.

The trick is to isolate the effect on expected gain from the effect on expected payment conditional on
a win. I establish existence of a deviation strategy that switches off any change in the expected gain and
the winning probability. That is, by playing such a deviation strategy a bidder can guarantee himself
the same expected gain and the same total winning probability as in in the candidate equilibrium.
By picking the deviation strategy accordingly, we can concentrate on the effect on expected payment
conditional on a win, as the the other components in Equation 2 are held constant. Critically hereby
is to employ deviations that involve the same bidding functions between bidders even after the a
deviation to a different information channel. This ensures that a bidder wins if and only if he has a
higher signal than his opponent in certain cases. The following deviation strategy is strictly profitable
whenever the candidate equilibrium contains ρ∗ > 0.

Definition 1. The deviation strategy (DS) for bidder i is the following strategy:
• deviate to ρi = 0,
• bid according to βS(xi) for XT

i = xi.
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This deviation strategy takes the signal XT
i about the private component and maps it into a

bid with bidding function βS as if it were the signal about the common component in the candidate
equilibrium. While this is not necessarily the optimal bidding behavior learningXT

i , it is strong enough
to establish a profitable deviation over the combination (XS

i , β
S), which is part of any candidate

equilibrium with ρ∗ > 0.

4.2 Expected Gain
In this section, I compare the expected gain for bidder i from DS to his expected gain from the CE with
combination (XS

i , β
S), if he expects his opponent to play according to CE. I show that the expected

probability of winning conditional on a value realization vi for bidder i, is identical in DS and in CE.
Fix a value vi for bidder i. There are two possibilities that can arise, depending on which infor-

mation channel bidder j chooses. Bidder i does not know in which possibility he is in, as information
selection is covert.

Opponent with signal XT
j . With probability (1 − ρ∗), the opponent of bidder i learns signal XT

j

about his private component, and follows the bidding function βT . In this situation, a higher signal
realization of bidder i does not necessarily imply winning, as this depends on the interplay of the the
bidding functions βS and βT .

DS : Pr(i wins|vi, X
T
i , β

S︸ ︷︷ ︸
DS

, XT
j , β

T ) = Pr(βS(XT
i ) ≥ βT (XT

j )|vi). (8)

CE : Pr(i wins|vi, X
S
i , β

S︸ ︷︷ ︸
CE

, XT
j , β

T ) = Pr(βS(XS
i ) ≥ βT (XT

j )|vi). (9)

Neither playing (XS
i , β

S) in CE nor DS of bidder i lead to correlation in private information, as
by Assumption IN XT

j is independent from any signal of bidder i. Hence, the probability of a win
conditional on any value vi is the same in Equation 8 and Equation 9, as the following lemma shows.

Lemma 1. For all vi, Pr(i wins|vi, X
S
i , β

S︸ ︷︷ ︸
CE

, XT
j , β

T ) = Pr(i wins|vi, X
T
i , β

S︸ ︷︷ ︸
DS

, XT
j , β

T ).

Note that Lemma 1 does not require bidder i and j to follow the same bidding function. The
marginal distribution of both signals XS

i and XT
i of bidder i coincide conditional on every value vi.

This follows as both signals have equal marginal distributions. As bidder i follows the same bidding
function in CE and DS, also the marginal distribution of bids coincides for each value vi. As the signal
of the opponent XT

j is independent from bidder i for any information choice, the probability of winning
is the same in CE and in DS.

Opponent with signal XS
j . With probability ρ∗, bidder i faces an opponent who learns XS

j about
his common component. In this case, both bidders follow the same bidding function βS , and bidder i
wins if and only if his opponent has a lower signal than him.22 The winning probabilities for bidder i

22Ties are ignored as they have zero probability.
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conditional on vi in DS and in (XS
i , β

S) in CE are

DS : Pr(i wins|vi, X
T
i , β

S︸ ︷︷ ︸
DS

, XS
j , β

S) = Pr(XT
i ≥ XS

j |vi). (10)

CE : Pr(i wins|vi, X
S
i , β

S︸ ︷︷ ︸
CE

, XS
j , β

S) = Pr(XS
i ≥ XS

j |vi). (11)

For each total value realization vi for bidder i, the following theorem pins down the probability of
having the highest signal in (XS

i , β
S) in CE and in DS.

Proposition 1. For all total values vi for bidder i,

Pr(XT
i ≥ XS

j |vi) = Pr(XS
i ≥ XS

j |vi) = 1
2 .

Hence, winning probability is equal for every value realization vi in both DS and CE:

Pr(i wins|vi, X
S
i , β

S︸ ︷︷ ︸
CE

, XS
j , β

S) = Pr(i wins|vi, X
T
i , β

S︸ ︷︷ ︸, XS
j , β

S).

This proposition is more complicated to establish and does not follow from independence as does
Lemma 1. This is because if the opponent learns XS

j about the common component, bidder i has a
choice between interdependence in signals (by choosing XS

i in CE) and independence (by choosing DS
and XT

i ). Furthermore, the proposition crucially relies on the fact that there are only two bidders.23

It is instructive to consider how winning probability changes in different combinations of S and
Ti for bidder i, when deviating to DS from CE. Proposition 1 establishes that winning probability
conditional on any value realization vi is constant. Yet, the particular composition of states S and Ti

of components, in which a bidder i wins, changes.
Fix any total value realization vi, and fix some feasible realization of the common component

s ∈ [max{0, vi − 1},min{1, vi}]. Then, ti = vi − s. If bidder i plays according to CE with (XS
j , β

S)
and faces an XS

j -type opponent, his probability of winning at this combinations of S and Ti is

Pr(XS
i ≥ XS

j |S = s, Ti = vi − s) =
∫ 1

0
fS(x|s)FS(x|s)dx = 1

2 .

If bidder i plays DS instead, his winning probability for this combination vi and s is

Pr(XT
i ≥ XS

j |S = s, Ti = vi − s) =
∫ 1

0
fT (x|vi − s)FS(x|s)dx.

The following lemma shows how DS shifts bidder i’s winning probability into states with a higher
private component realization.

Lemma 2. Fix vi ∈ (0, 2) and let bidder j learn XS
j and bid according to βS. With DS, bidder i

is strictly more (less) likely to win at S < vi/2 (S > vi/2) than with (XS
i , β

S) in CE. At S = vi/2,

23I extend the proposition in Section 5.2 to more than two bidders.
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Figure 2: Iso-value curve for total values vi = 0.8
of bidder i, showing different combination of feasible
value components S and Ti.

Figure 3: Winning probability in DS and (XS
i , β

S)
in CE, for different S-Ti-combinations, given vi = 0.8
and XS

j . The two green dots in DS sum up 0.5.

winning probability is equal in both strategies.

By deviating to DS, for a given vi, a bidder is strictly more likely to win in combinations that
involve a high Ti, and strictly less likely to win in combination that involve a high S. For example, fix
the value vi = 0.8 for bidder i, that stems from any combination of the common component S ∈ [0, 0.8]
and private component ti = 0.8 − S. This is depicted in Figure 2, where the diagonal line shows the
iso-value curve, that consists of all feasible S − Ti combinations that lead to the same overall value vi

for bidder i.
In CE with (XS

i , β
S), bidder i wins with equal probability of 1

2 for every realization of S ∈ [0.8]
when facing an opponent j who also learns about the common component. This is because both
bidders have access to the same winning technology, and both learn about the same variable S.

With DS, bidder i and bidder j look at different value components. Due to the MLRP, higher
signals are more likely for higher realizations of the value components. With DS, bidder i is more likely
to win in states with a high private component realization, and less likely to win with a high common
component realization.

This is depicted in Figure 3. The x-axis shows the common component S that is feasible with
vi = 0.8. For each feasible s on the x-axis, there exists a unique realization of ti such that vi = 0.8.
The y-axis is the respective winning probability for such a realized pair (S, Ti). The blue solid line at
y = 1

2 shows the winning probability with CE which is constant at one half. The green dashed line
sketches the winning probability with DS. The two lines cross exactly at vi/2 = 0.4.

In sum, the overall effect on the winning probability sums up to zero. Winning probability is
the same in CE with (XS

i , β
S) and DS for every vi. To provide intuition why the effect on overall

winning probability given vi evaporates, fix the following two combinations: (s = 0.1, ti = 0.7) and
(s = 0.7, ti = 0.1). Those two points are depicted by blue dots on the iso-value curve in Figure 2. As
S and Ti are distributed identically and independently, both combinations have equal probability of
h(0.1)h(0.7).

In CE, winning probability of bidder i is 1
2 in both those possibilities. This is depicted by the two

blue dots on the blue solid line at y = 1/2 in Figure 3. With DS, if (s = 0.1, ti = 0.7), the winning
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probability of bidder i is no longer 1
2 , but higher due to the higher private component in comparison

to the low common component. This is depicted by the green dot in the upper left corner of Figure
3. However, bidder i loses the exact same winning probability in state (s = 0.7, ti = 0.1), as there it
is his opponent who observes a signal about the higher state s, while bidder i learns about the lower
component realization ti. This is depicted by the green dot in the lower right corner. The overall
effect of the change in winning probability in the two combinations balances out to zero. In sum,
overall probability of a win conditional on being in one of those two combinations, remains 1/2. This
argument works for any two feasible symmetric combinations (s = a, ti = vi−a) and (s = vi−a, ti = a)
for any vi. Therefore, information selection shuffles the states in which bidder i wins, while keeping
the overall probability fixed.

To sum up, given any realization of the total value vi, DS and (XS
i , β

S) in CE yield the same
probability of winning if his opponent learns about the common component, snd if the opponent learns
about his private component. The following corollary shows the impact of DS on the expected gain in
Equation 3 and Equation 4 and on total winning probability in comparison to CE with (XS

i , β
S). It

is an immediate implication of of Lemma 1 and Proposition 1, and the proof is therefore omitted.

Corollary 1. Expected gain in CE with (S, βS) and DS coincide. The total winning probability is
identical in DS and CE with (S, βS).

As winning probability is the same for every vi, it is also the same overall in CE and DS.

4.3 Expected Payment
The expected payment conditional on winning changes under the deviation strategy. In the following I
show, that DS leads to a strictly lower payment by establishing a stochastic dominance order between
the payment distributions with and without interdependence in private signals.

Consider the signal distribution of the opponent j, conditional on bidder i winning in Equation 5.
First, consider bidder i facing a XT

j -type opponent. If βS(xi = 1) ≤ βT (xi = 0), bidder i has a zero-
probability of winning in DS and in CE with (XS

i , β
S) against bidder j bidding with βT . Therefore,

deviating to DS does not change the expected payment when facing a XT
j -type opponent.

If βS(xi = 1) > βT (xi = 0), bidder i who employs bidding strategy βS has a non-zero winning
probability when facing a XT

j -type opponent. The distribution of signals of the loosing bidder j is
well-defined. It is HT (xj |βS , βT , XT

j ) if bidder i plays DS, and HS(xj |βS , βT , XT
j ) if bidder i plays

CE with (XS
i , β

S).
If bidder i faces aXS

j -type opponent, the distribution of his opponent’s signal isHT (xj |βS , βS , XS
j )

if bidder i plays DS, and HS(xj |βS , βS , XS
j ) if bidder i plays CE with (S, βS).

Lemma 3. 1. Opponent with signal XT
j : for all xj ∈ [0, 1], if βS(1) > βT (0), then

HS(xj |βS , βT , XT
j ) = HT (xj |βS , βT , XT

j );

2. Opponent with signal XS
j : HS(xj |βS , βS , XS

j ) (strictly) first order stochastically dominates
(FOSD) HT (xj |βS , βS , XS

j );
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3. Overall expected payment is strictly lower under DS than in CE with (XS
i , β

S).

The first property says that as long the opponent looks at his private component XT
j , the expected

distribution of payments of bidder i in case of a win does not depend on bidder i’s information choice.
Note that it does not rely on bidder i and j employing with the same bidding functions, but only
bidder i using the same βS for both his information channels XS

i and XS
j . The property holds because

if bidder j learns XT
j , his signal and thus his bid distribution is independent from both signals XS

i and
XT

i of bidder i. Both these signals of bidder i have the same marginal distribution via Observation 1.
The argument is similar to the proof of Lemma 1 and relies on independence in private signals.

The second property establishes that if bidder j learns XS
j about the common component, and

both bidders follow the same bidding function βS , the event of bidder j having a signal below some xj

conditional on bidder i winning is more likely for every xj . That is, the cumulative distribution of the
second order statistic under interdependent signals with XS

i FOSD the distribution of the second order
statistic under independence with XT

i . By the FOSD, conditional on bidder i winning, the signals and
therefore the bids of the opponent are distributed lower in DS than in CE with (XS

i , β
S).

For a quick sketch24 of the argument, the following expression is the signal distribution of XS
j of

bidder j, conditional on bidder i playing DS and winning (in this case signals of the two bidders are
independent):

HT (xj |βS , βS , XS
j ) = 2

∫ xj

0
f(x̃j) (1− F (x̃j)) dx̃j = 2F (xj)− F (xj)2. (12)

This is the second order statistic of the two equally distributed independent signals XT
i and XS

j , as
bidder i pays the second order statistic conditional on winning. Both bidders follow the same bidding
function βS , and bidder i wins if and only if he has a higher signal than his opponent.

If bidder i plays CE with (XS
i , β

S), conditional on bidder i winning with XS
i and βS , the distri-

bution of his opponent’s signal XS
j is the following expression:

HS(xj |βS , βS , XS
j ) = 2

∫ xj

0

∫ 1

0
f(x̃j |s) (1− F (x̃j |s))h(s)dsdx̃j = 2F (xj)−

∫ 1

0
F (xj |s)2h(s)ds.

(13)

This is the cumulative distribution function of the second order statistic under correlation between
XS

i and XS
j via the common component S.

Comparing Equation 12 with Equation 13 shows that conditionally on a win, less correlation
induces a lower distribution of the second order statistic and thus, a lower payment distribution. That
is, for all xj ∈ (0, 1), the Cauchy-Bunyakovsky-Schwarz (strong)25 inequality establishes

F (xj)2 =
(∫ 1

0
F (xj |s)h(s)ds

)2

<

∫ 1

0
h(s)ds︸ ︷︷ ︸
=1

∫ 1

0
F (xj |s)2h(s)ds.

24See the proof of Lemma 3 for a derivation of these cumulative distribution functions.
25For the strong Cauchy-Bunyakovsky-Schwarz inequality, see Footnote 33 in the proof of Lemma 3.
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Hence, the probability of paying any bid βS(xj) or below conditional on winning is lower when
playing DS than when playing the candidate equilibrium with XS

j . Conditional on winning, the lower
the distribution of the opponent’s signal (i.e. the lower the second order statistic), the lower the
expected payment given a fixed bidding strategy βS of the opponent. Consider the limiting case
of almost perfect correlation. Conditional on the event of winning, the bid of the other bidder is
close to the own bid. Without correlation, the bid of the opponent conditional on a win is distributed
independently. Conditional on winning, a bidder prefers his opponent to bid as low as possible. Positive
interdependence raises the expected payment conditional on a win by increasing the distribution of
the second order statistic in the sense of FOSD.

To sum up, when facing a XT
j -type opponent, expected payment is the same in DS and CE with

(XS
i , β

S). Conditional on a win against a XS
j -type opponent, the payment distribution of bidder i with

DS is strictly dominated by the payment distribution with CE and (XS
i , β

S). Hence, the conditional
payment is strictly lower in DS than in CE with (XS

i , β
S). As the bidding function βS is strictly

increasing in the signal, this follows immediately via strong FOSD in Equation 6. By Corollary 1,
the winning probability with DS is equal to the winning probability in CE. Hence, the unconditional
expected payment is also strictly less with DS with XS

j of the opponent.
The probability to encounter a XS

j -type opponent is non-zero in any candidate equilibrium with
ρ∗ > 0. Therefore, the third statement of Lemma 3 follows. Unconditional expected payment from DS
is strictly less than in the candidate equilibrium with (XS

i , β
S).

4.4 Equilibrium and Social Surplus
The advantage of the deviation strategy DS is that it does not modify neither the overall probability
of winning for each valuation vi nor the expected gain, but instead lowers the expected payment in
case of a win due to less dependence between the signals of the two bidders. Combined, Corollary 1
and Lemma 3 establish that no ρ∗ > 0 can be an equilibrium, as DS constitutes a strictly profitable
deviation.

For Theorem 1 to hold we need to establish existence of an equilibrium with ρ∗ = 0. In this case,
both bidders learn about their private components, information is only relevant for the bidder who
observes it, and bidders are in an IPV setup. Hence, due to Observation 2, a bidder is indifferent
between the two signals. The value of information from both signals is the same, as both lead to no
interdependence with the opponent, and both induce the same best response and posterior about the
total value of the object.

Social surplus is maximized if a bidder with the highest expected private component Ti receives
the object. All bidders share the same common component S, which therefore plays no role for the
social surplus. Ex-ante efficiency requires all bidders to learn only about their private component, to
maximize the ex-ante expected social surplus. Information about the common component is not socially
valuable, and available only by incurring the opportunity costs of not learning about the private com-
ponent. Theorem 1 establishes that no equilibrium exists unless ρ∗ = 0. The SPA is ex-ante efficient
as it induces ρ∗ = 0 and allocates efficiently.
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5 Generalization
In this section, I analyze the incentives to select information in the SPA for a broader class of utility
functions (Section 5.1) and discuss the applicability of my approach for the case of more than two
bidders in Section 5.2. In the following, I restrict attention to pure information selection: bidders
select information either about their private component via ρi = 0 or about their common component
via ρi = 1. I show that my approach generalizes to a general class of utility functions, as long as they
satisfy a marginal rate of substitution property.

5.1 General Utility Function
In the preceding parts of this paper, a bidder’s overall utility function was symmetric, Vi = S + Ti.
Next, consider a generalized class of utility functions Vi = u(S, Ti) that satisfy the following properties:

1. u(0, 0) ≥ 0, and u(1, 1) <∞;

2. u(·, ·) is strictly increasing in both arguments;

3. for all I ∈ [0, 2], u(S, I − S) is non-increasing in S ∈ [0, 1].

The first property binds the utility of a bidder above and below such that it is never strictly
negative. The second property guarantees that any increase in either of his two components is strictly
better for the bidder. The third property is a condition on the marginal rate of substitution between
the two components S ∈ [0, 1] and Ti ∈ [0, 1], when their sum is constant at some I ∈ [0, 2]. The
property states that by substituting Ti with the same amount of S, the bidder is weakly worse off. If
the utility function is differentiable in both arguments, the third property simply reduces to a marginal
rate of substitution inequality: ∂u(·)

∂S ≤ ∂u(·)
∂Ti

∣∣∣
I=S+Ti

.
A utility function, that satisfies above assumptions, is for example

Vi = αS + (1− α)Ti

with α ∈ (0, 1
2 ]. For this particular example, it is straightforward to see that for any sum of the

components I = S + Ti, we have du(S,I−S)
dS ≤ 0 whenever α ≤ 1

2 . The following proposition extends
the result for the SPA for this extended class of utility functions.

Proposition 2. For all utility functions satisfying properties 1.-3., there exists no equilibrium of the
SPA in which bidders learn about the common component via ρ∗ = 1.

The proof is by contradiction, along the lines of the technique developed in Section 4. For a sketch
of the argument, consider ρ∗ = 1 being a candidate equilibrium (CE). That is, in equilibrium both
bidders learn only about their common component and expect their opponent to do the same. Then,
bidder i can play the following deviation strategy (DS) as in the preceding section and strictly increase
his expected utility: Set ρi = 0 and observe XT

i , but bid according to bidding function βS that bidder
i uses in the candidate equilibrium with XS

i .
In contrast to the preceding section, the expected gain from DS will be different than in CE. By

Proposition 1, with a symmetric utility function Vi = S+Ti, it holds for two bidders and any vi ∈ [0, 2]
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realization: Pr(XT
i ≥ XS

j |vi) = Pr(XS
i ≥ XS

j |vi). The theorem conditions on all combinations of S
and Ti, that sum up to I = vi, which corresponds to the same utility of vi for the symmetric utility
function Vi = S + Ti. Hence, there is no need to differentiate between the sum of the two components
and the overall utility for bidder i from this component combination.

Note that for the general utility functions satisfying properties 1.-3., the statement of Proposition
1 holds exactly in the same manner when conditioning on I = S + Ti, but no longer on the value
realization vi, which might be different for the same sum I of the two components.26 That is, we have
for all I ∈ [0, 2]

Pr(XT
i ≥ XS

j |I) = Pr(XS
i ≥ XS

j |I).

In DS and in CE, bidder i follows βS , the same bidding function as his opponent in the CE with
ρ∗ = 1. Hence, bidder i wins whenever he has a higher signal realization than his opponent. Thus, the
above is the probability of winning conditional on the sum I of the two value components for bidder i.

This establishes that the bidder is equally likely to win, given the sum of the two components. In
Section 4.2 I establish that while keeping the overall probability of a win for vi fixed, DS has an adverse
effect on winning in different combinations of S and Ti, as Lemma 2 depicts. Lemma 2 applies exactly
in the same way for the case of fixing the sum of the two components I, instead of vi. Replacing every
vi in the proof by I yields the result.

By deviating to DS, for a given I, a bidder is strictly more likely to win in combinations that
involve a high Ti, and strictly less likely to win in combination that involve a high S. By property 3.,
a bidder prefers those combinations with a higher Ti in which he wins more often over those with a
low Ti in which he loses winning probability. Hence, his expected gain from DS is weakly higher than
from CE.

Example 2. Let Vi = 0.4S + 0.6Ti and consider the following density of signals for each component
realization r ∈ [0, 1]: f(x|r) = (2 − 2r) + (4r − 2)x. For this linear example, the winning probability
when deviating to DS is Pr(XT

i ≥ XS
i |I, S = s) = I

3 −
2s
3 + 1

2 for all I ∈ [0, 2] and all feasible
s ∈ [max{0, I − 1},min{1, I}].

The winning probability at different realizations of S for Example 2 is depicted in Figure 4. It
shows how the winning probability varies in s for a given sum of the components of bidder i, I = 0.8,
if the bidder follows DS or plays the candidate equilibrium strategy ρ∗ = 1 and βS . For I = 0.8, the
black dotted line is the winning probability of bidder i with s in the candidate equilibrium, and the
blue solid line is his winning probability in s from DS. Note that the s-axis ends at s = I: no higher S
is compatible with I = 0.8. It shows how winning probability under DS is reallocated from states with
a high S to states with a lower S (into states that are more desirable for the bidder under property 3.
of the utility function), while keeping the overall probability fixed.

The purple dotted line is the object’s valuation of bidder i for the specific I−S combination, when
his utility function is Vi = 0.4S + 0.6Ti as in Example 2. It sketches that bidder i’s expected gain
increases from playing DS due to a shift of winning probability from states with low Ti to states with

26The steps of the proof for fixing I instead of vi are exactly the same as for vi, and the result follows
by simply replacing every vi in the proof of Proposition 1 by I.
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Figure 4: Winning probability in DS (blue solid line), the candidate equilibrium (black dashed line) and value of the
object (purple dotted) with ρ∗ = 1, I = 0.8, f(x|r) = (2− 2r) + (4r − 2)x and Vi = 0.4S + 0.6Ti.

high Ti which the bidder values more.27

Note that Lemma 3 for the payment applies without changes: the expected payment is strictly
lower under the DS, due to less interdependence between the bids in case of a win. This is because
Lemma 3 does not rely on a specific functional form of the bidding function, but holds for any increasing
symmetric function via FOSD.

Thus, a bidder is more likely to win when he values the object more. By property 3. of the utility
function, he values an increase in Ti more than in S. Instead of winning with probability 1

2 at every
realization of S, via DS a bidder shifts his winning probability to states with higher Ti realization and
lower S, and away from states with a high S realization and lower Ti. As a result, the expected gain
from DS is weakly better than in the CE with ρ∗ =. A proof of this argument that accounts for the
prior probability distribution over combinations of S and Ti, is provided in the Appendix in the proof
of Proposition 2.

This establishes, that the result that interdependence cannot be sustained in any equilibrium of the
SPA is robust to a perturbation of the utility function into a direction, where the private component
Ti matters more for the bidder (property 3.).

A natural question is whether a perturbation into the other direction – making S slightly more
important for the bidder than Ti – breaks the result. Consider the following utility function: Vi =( 1

2 + ε
)
S+

( 1
2 − ε

)
Ti, with ε > 0, such that u(S, I−S) is strictly increasing in S. Can any equilibrium

with learning about the common component via ρ∗ = 1 be sustained under this utility function? For ε
sufficiently small, the answer is No. Note that irrespective of the utility function, bidder i can always
guarantee himself a strictly lower payment by playing DS. His gain in payment from this deviation is
bounded away from zero. Fix some I = s + ti for bidder i. Under DS, the bidder is more likely to
win at states with high Ti and low S, and less likely to win when S is high (which he values more).
In Figure 4, the purple dotted utility function would be increasing in s, showing that DS shifts his
winning probability into unfavorable states combinations. Nevertheless, this loss in expected gain can
be made arbitrarily close to zero by choosing ε sufficiently small. Therefore, the decrease in payment

27In the symmetric setup in Section 4 with the sum of the two components being the utility Vi =
S + Ti = I, the purple dotted line is constant for every realization of S for fixed I.

23



offsets the loss in gain for a sufficiently small ε in the utility function.
Hence, the argument that there cannot be learning about the common component in equilibrium

is also robust to making the common component slightly more valuable to the bidder than the private
component. Yet, increasing the marginal utility of S further by increasing ε eventually breaks the
predominance of the gain from lower payment over the lower expected gain from the object. Whether
an equilibrium with learning about the common component can be sustained in equilibrium in such a
case will depend on the primitives of the model: the utility function Vi = u(S, Ti), the distributions
of S and Ti, and the signal distributions f(x|r). The deviation strategy (DS) is no longer suitable for
establishing non-existence in such a framework.

5.2 N Bidders
Consider a CE of the SPA with ρ∗ = 1 and βS . In the following I show the extension of Proposition 1
to the case of N > 2 bidders. Let the utility function be symmetric (Vi = S + Ti) as in Section 4.

Consider the same deviation strategy (DS) as for the case N = 2, in which bidder i selects ρi = 0,
observes XT

i and bids according to βS as if his signal were about the common component in CE.
In both strategies DS and CE, bidder i wins if and only if he has a higher signal realization than

all of his opponents, where ties can be ignored. Let Y S
i = maxj 6=i{XS

1 , ..., X
S
i−1, X

S
i+1, ..., X

S
N} be the

highest signal realization of all other bidders but bidder i about the common component.
Due to independence conditional on S, the highest signal Y S

i of all other bidders has cumulative
distribution function

G(y) =
∫ 1

0
F (y|s)N−1h(s)ds.

For each total value realization vi for bidder i the following theorem pins down the probability of
winning under DS or CE, depending on whether he observes XT

i or XS
i .

Proposition 3. Let all N − 1 ≥ 2 other bidders learn XS
j 6=i about the common component. Then, for

all total values vi ∈ [0, 2] for bidder i:

Pr(XT
i ≥ Y S

i |vi) ≥ Pr(XS
i ≥ Y S

i |vi) = 1
N
.

The inequality is strict for all vi 6= {0, 1}.

Let all other bidders learn about the common component S. Fix a total valuation for bidder i,
by keeping the sum of the two components equal at vi = S + Ti. The theorem says that, by selecting
information about the private component Ti instead of S, bidder i can increase his probability of
having the highest signal for all values vi.

The difference of Proposition 3 to Proposition 1 with N = 2, in which winning probability is
identical for all vi, stems from difference in the first order statistic of a bidder’s opponents. WithN = 2,
the distribution of the first order statistic of the other bidders is simply the signal distribution of a
bidder’s single opponent. Moreover, this distribution is the same as a bidder’s own signal distribution.
With more than one opponent, the first order statistic of the other bidders no longer coincides with
the own signal distribution.
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(s = 0.7, ti = 0.1) (s = 0.1, ti = 0.7) total winning prob.
CE 1/N 1/N 1/N
DS 0 1 1/2

Table 1: Probability of bidder i winning in DS and CE with ρ∗ = 1, conditional on vi = 1. Both state combinations
have equal probability of h(0.1)h(0.7). Overall winning probability is higher with DS.

This becomes apparent in Figure 3 where different winning probabilities are described for the case
of two bidders. Consider the same numerical example as before: vi = 0.8 and either (s = 0.1, ti = 0.7),
or (s = 0.7, ti = 0.1). With two bidders, bidder i gains winning probability in (s = 0.1, ti = 0.7), but
loses the same amount of winning probability in (s = 0.7, ti = 0.1), as his opponent is symmetric to
him and the first order statistic is the same as his own signal distribution.

With more than two bidders, the gain of bidder i from DS in state (s = 0.1, ti = 0.7) is larger than
the winning probability that he loses in state (s = 0.7, ti = 0.1), when he bids against a higher first
order statistic. The next example depicts this intuition for fully revealing signals.

Example 3. Fix vi = 0.8 and consider two S-Ti-combinations that are compatible with this total value
realization for bidder i, (s = 0.1, ti = 0.7) and (s = 0.7, ti = 0.1). Both combinations occur with equal
probability of h(0.1)h(0.7) as S and Ti are drawn i.i.d.

Consider fully revealing signals about both value components K ∈ {S, Ti}, such that

Pr(XK
i = x|K = r) =

1 if x = r,

0 otherwise.

If multiple bidders have the same highest signal realization, ties are broken evenly about who wins.28

If (s = 0.7, ti = 0.1), all N − 1 other bidders learn a signal XS
j with realization xj = 0.7. If bidder

i learns XS
i as well, he has signal realization 0.7, and wins with probability 1

N . If bidder i observes
signal XT

i instead about his private component, his signal realization is 0.1 and he has zero probability
of winning. These probabilities are summarized in the first column of Table 1.

If (s = 0.1, ti = 0.7), all other bidders observe a signal realization xj = 0.1. If bidder i learns
about S, he also observes realization 0.1 and wins with probability 1

N . If bidder i learns about his
private component, his signal realization is 0.7 and he wins with probability 1. This is summarized in
the second column of the Table 1.

Winning probability overall in DS is higher than in CE. In (s = 0.1, ti = 0.7), bidder i has a lot of
probability mass of winning to gain by learning about Ti. In state (s = 0.7, ti = 0.1), even if bidder i
learns about S, his probability of a win is not very high, since the first order statistic of the other bidders
is elevated by the high realization of S. The gain in probability mass of winning in (s = 0.1, ti = 0.7)
is larger than the loss in (s = 0.7, ti = 0.1).

This argument becomes apparent with N → ∞. As the number of bidders increases and all other
bidders learn about the common component, bidder i’s probability of winning with CE approaches zero
in both (s = 0.1, ti = 0.7) and (s = 0.7, ti = 0.1). On the other hand, playing DS always guarantees

28In the continuous version of my model, ties have zero probability. In this discrete example, ties
occur with strictly positive probability, which requires a tie-breaking rule.
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bidder i a win in state (s = 0.1, ti = 0.7). It is easy to see that when there are only two bidders, gain
and loss in the two states are exactly equal: learning about either component yields the same overall
probability 1

2 of having the highest signal for bidder i in above two state realizations. This is evident
in the third column of Table 1 for N = 2.

An immediate corollary of Proposition 3 is the following.

Corollary 2. Let all the opponents of bidder i learn about the common component by observing XS
j 6=i.

For N > 2, the overall probability of winning is strictly higher in DS than in CE.

As Proposition 3 holds for each realization of vi, it also holds overall and the proof is therefore
omitted.

An overall higher probability of a win at every value realization vi might seem good news for the
overall payoff in DS. Expected gain from DS is clearly strictly higher than the expected gain in CE.
Complications arise in expected payment: total winning probability in DS is strictly higher than in
CE. Hence, the expected payment conditional on a win is multiplied with a higher overall probability
of winning in Equation 7. The separation approach in the expected utility – keep expected gain and
total winning probability constant and focus on the expected payment – is no longer applicable as
overall expected payment can strictly increase by switching from CE to DS and needs to be weighted
against the gain in expected utility.

6 Alternative Auctions
In this section, I apply the developed technique to two further auction formats, the FPA (Subsection
6.1) and the all-pay auction (Subsection 6.2). As in the preceding section, I restrict attention to
pure information selection, ρi ∈ {0, 1}. For the FPA, I show that ρ∗ = 1 cannot be ruled out as
an equilibrium with the developed approach. Furthermore, ρ∗ = 0 is not robust in the FPA when
introducing a small degree of correlation between the private component and the common component.
In the all pay auction with more than two participants, bidders do not want to learn about the common
component, and ρ∗ = 0 is an equilibrium.

6.1 First Price Auction
Two bidders compete in a FPA with no reserve price.29 Bidders can either learn about the common
variable S via observing the random variable XS

i or learn about the private variable Ti via observing
the random variable XT

i , that is, ρi ∈ {0, 1}.
In section 4, I derived the necessary toolbox to show why ρ∗ = 1 cannot arise in any equilibrium of

the SPA: a bidder could play a certain deviation strategy that decreases correlation between his signal
and the signal of the opponent. Then, bidding as if having observed XS

i but having truly observed
XT

i yields bidder i the same expected gain (Corollary 1) for a strictly lower payment (Proposition 3).

29As before in the SPA, ties have zero probability and can be ignored.
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In the following I show why this argument cannot be used for the FPA to rule out ρ∗ = 1. Let the
candidate equilibrium be ρ∗ = 1, and both bidders bid according to βS

f . Consider the same deviation
strategy as in the SPA for bidder i:

Definition 2 (DSf ). A deviation strategy (DSf ) for bidder i in the FPA is the following strategy:
• deviate to ρi = 0 and observe XT

i ;
• bid according to βS

f (·).

The expected payoff from this deviation strategy is best evaluated by once again separating the
expected gain from the expected payment. In the candidate equilibrium, bidder i is sure that he faces
a XS

j -type opponent. Then, by Proposition 1 and Corollary 1, total winning probability is the same in
DS and the candidate equilibrium. That is, Pr(XS

i ≥ XS
j ) = Pr(XT

i ≥ XS
j ) = 1

2 . Therefore, expected
gain from DSf is the same as from the equilibrium bidding strategy. This immediately follows from
Corollary 1, as the effect of DS on the expected gain coincides in the FPA and the SPA coincide. The
difference between SPA and the FPA lies in their payment rule and not in the allocation decision.

Next, I show the effect of DSf on the expected payment. Similar to the SPA, define the cumulative
signal distribution of bidder i, conditional on winning. The definition of this distribution captures his
own information choice K ∈ {S, Ti}, the information choice of his opponent L ∈ {S, Tj} and both
bidding functions βK

i and βL
j .

HK
f (xi|βK

i , β
L
j , X

K
j ) := Pr(XK

i ≤ xi|βK
i (XK

i ) ≥ βL
j (XL

j )).

For DSf , this distribution is the following. The joint event of the common component being
S = s, bidder i seeing XT

i = xi and bidder i winning with βS
f has density h(s)fT (xi)FS(xi|s). As

the distributions of both components are the same by Assumption A1, I drop the superscripts in the
following. Integrating over all common states results yields the distribution:

HT (xi|βS
f , β

S
f , X

S
j ) =

∫ xi

0
∫ 1

0 F (x̃|s)h(s)dsf(x̃)dx̃
Pr(XS

i ≥ XS
j )

=
∫ xi

0 F (x̃)f(x̃)dx̃
1
2

= F (xi)2.

AsDSf involves bidding with the same bidding function βS as the opponent, the above distribution
of signals of bidder i conditional on winning simplifies to the distribution of the first order statistics
of two independent signals, XT

i and XS
j , each drawn with identical distribution F (·).

Next, consider the cumulative distribution of signals of bidder i who follows the candidate equi-
librium strategy. The joint event S = s, XS

i = xi and bidder i winning with βS
f has density

h(s)fS(xi|s)FS(xi|s). This results in the following distribution, where I once again drop the su-
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perscripts.

HS(xi|βS
f , β

S
f , X

S
j ) =

∫ xi

0
∫ 1

0 f(x̃|s)F (x̃|s)h(s)dsdx̃
Pr(XS

i ≥ XS
j )

=
∫ 1

0
∫ xi

0 f(x̃|s)F (x̃|s)dx̃h(s)ds
1
2

=
∫ 1

0
F (xi|s)2h(s)ds.

Using the strict30 Cauchy-Bunyakovski-Schwarz inequality we have for all x ∈ (0, 1),

F (xi)2 =
(∫ 1

0
F (xi|s)h(s)ds

)2

<

∫ 1

0
h(s)ds︸ ︷︷ ︸
=1.

∫ 1

0
F (xi|s)2h(s)ds. (14)

The distribution of the first order statistic is strictly higher under interdependent signals, than
under independent signals. This establishes FOSD, as HT (xi|βS

f , β
S
f , X

S
j ) < HS(xi|βS

f , β
S
f , X

S
j ) for

all x ∈ (0, 1). That is, HT (·) is FOSD over HS(·). This immediately translates into a strictly higher
payment under DS in case of a win as the bidding function βS

f is strictly increasing:∫ 1

0
βS

f (xi)dHS(xi) <
∫ 1

0
βS

f (xi)dHT (xi).

The expected payment conditional on a win is strictly lower under the original equilibrium strategy
than under the constructed deviation DSf . Not only does decreasing the correlation not help like in
the SPA, but it hurts the agent. A bidder still wins with the same probability conditional on any value
realization vi (this is an implication of Proposition 1 and the construction of DSf using the same
bidding strategy as the equilibrium). However, by decreasing correlation with his opponent, a bidder
is more likely to win at higher signal realizations which drives up his expected payment. This shows
why ρ∗ = 1 cannot be ruled out as an equilibrium by a deviation strategy of the same kind as in the
SPA that decreases interdependence in private information.

Correlation between the components. As in the case with the SPA, an IPV equilibrium with
ρ∗ = 0 always exists. This is because if the opponent of bidder i observes a signal about his private
component, bidder i is in an IPV setup. Then, bidder i is indifferent between both information
channels, as they both contain the same accuracy about the total value vi and each signal realization
leads to the same best response due to Observation 2. Such an equilibrium is a ‘trivial’ equilibrium, as
each bidder’s information has neither an effect on interdependence between the signals, nor on total
valuations.

Next, I analyze whether the trivial equilibrium with ρ∗ = 0 is robust to a small degree of interdepen-
dence between the bidders. For this purpose, I introduce a slight perturbation into the informational
structure. First, the common component S realizes with distribution H(·), as in the Model Section 2.
Then, the private components T1 and T2 are drawn. In contrast to the analysis before, with probability

30See footnote 33 for the strict inequality.
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ε the common and private component of bidder i are identical (which is unobserved): Ti = S. With
probability 1 − ε, Ti is drawn independently and identically with the same cumulative distribution
H(·). Therefore, ε captures the correlation between each bidder’s private component and the common
component. In the analysis so far, ε = 0. Furthermore, with ε > 0 the IPV framework is ruled out
as the signal of the opponent always contains relevant information about the common component
irrespective of its source. That is, learning XT

i and XS
i contain information about both components.31

The next proposition shows that in the FPA, there cannot exist an equilibrium in which bidders
learn signals XT

i about their private components.

Proposition 4. For ε > 0, there exists no symmetric equilibrium of the FPA with ρ∗ = 0.

The proof follows by combining the following two lemmas. Like in the SPA, the proof of the theorem
is by contradiction. It relies on providing a deviation strategy and decomposing expected utility into
an expected gain (which is the same in DSf and the candidate equilibrium) and an expected payment
(which is strictly less under DSf ). I show that the following deviation strategy DS

f is a strictly
profitable deviation.

Definition 3. The deviation strategy (DSf ) for bidder i in the FPA is the following strategy:
• deviate to ρi = 1,
• bid according to βT

f (xi) for XS
i = xi.

The deviation strategy DS
f involves changing the information selection strategy from learning

XT
i to learning XS

i , but not the bidding function. It requires a bidder to learn about the common
component, but follow the same bidding function as if the bidder learned XT

i . It is complementary to
the deviation strategies considered before, as its purpose is to increase (not decrease) correlation while
following the same bidding function.

The following lemma pins down the effect of DSf on the winning probability for each object value
and the expected gain from this deviation.

Lemma 4. For each value vi, the winning probability of bidder i in DSf equals the winning probability
in equilibrium under ρ∗ = 0. The expected gain from DS

f equals the expected gain from the equilibrium
with ρ∗.

The proof uses parts of Proposition 1 for the special case of two bidders. As bidders follow the
same bidding strategy βT

f in both the equilibrium and DS
f , a winning bidder is a bidder with the

highest signal realization. Therefore, the proof relies not necessarily on the optimal deviation strategy,
but one that uses the same bidding function βT

f for tractability of the change in winning probability
for each vi. Overall expected gain from the candidate equilibrium and the deviation strategy DSf is
the same.

The next lemma pins down the difference in expected payment between the equilibrium with ρ∗ = 0
and under the deviation strategy DSf .

31An alternative perturbation is the following: both bidders make a small ‘tremble’ when choosing
their information source. With probability 1 − ε they observe a signal about their preferred value
component; with probability ε they perform an experiment on the wrong component. This perturbation
yields the same results on equilibrium existence as the one introduced in this section.
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Lemma 5. Let ε > 0. The expected payment with DS
f in the FPA is strictly less than in the

equilibrium with ρ∗ = 0.

The argument is similar to the one developed above to show that ρ∗ = 1 cannot profit from
DSf . Intuitively, achieving a stronger dependence with the opponent reduces the ’money left on the
table’ in the FPA. A bidder pays his own bid. Conditional on the event of winning, he prefers to
outbid his opponent by as little as possible. Whenever the perturbation is inactive as the opponent
bidders observed his private component signal XT

i as selected by ρ∗ = 0, there is no difference between
behaving as in equilibrium and following DSf . The deviation strategy comes into play whenever the
opponent trembled and observed XS

i . In this case, a bidder is more likely to observe a signal about the
common component and be more correlated with the opponent under the deviation strategy DSf than
under the equilibrium strategy. As in both cases, bidders follow the same bidding function, the FOSD
argument holds. The expected payment that a bidder has to pay in case of a win is strictly higher
with less interdependence, as a bidder is more likely to win when he places a low bid (with higher
dependence his opponent is less likely to outbid him in this range). Similarly, with more dependence,
a bidder is less likely to win when placing a high bid, as his opponent is more likely to outbid him in
the range of higher bids. Expected payment is strictly higher under less correlation, while expected
gain is constant. And under the deviation strategy the event of higher correlation (when both bidders
observed a signal about S) is more likely to occur.

To sum up Lemma 4 and Lemma 5, the deviation strategy does not change the winning probability
or the expected gain from participating, but strictly decreases expected payment. As increasing the
dependence in private information with the opponent comes without a loss for expected value, due
to the particular construction of DSf , it constitutes a strictly profitable deviation. Therefore, DSf

is a strictly profitable deviation. The equilibrium ρ∗ = 0 is not robust to the perturbation of the
information structure.

6.2 All-Pay Auction
Consider an all-pay first price auction with N bidders. Bidders submit bids bi as a function of their
signal realization XT

i or XS
i . Payment and allocation rule result in the following payoff Wi for bidder

i who places bid bi:

Wi =


Vi − bi if bi > maxj 6=i bj

Vi

#{k:bk=bi} − bi if bi = maxj 6=i bj

−bi if bi < maxj 6=i bj

Bidders always pay their bid, irrespective of the event of winning. They win if they submitted
a higher bid than their opponents. Krishna and Morgan (1997) analyze the all-pay auction in a
symmetric interdependent value framework. They show when a symmetric equilibrium in increasing
strategies exists.

Denote the bidding function in a candidate equilibrium of the all-pay auction after learning XS
i

by βS
a , and after learning XT

i by βT
a . The next theorem and lemma establish the main result for the

all-pay auction about information selection and existence in equilibrium.
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Proposition 5. For N > 2, there exists no equilibrium of the all-pay auction with ρ∗ = 1.

Learning about the common component cannot arise in equilibrium. Similar to the proof technique
of the SPA, I establish the result by constructing a deviation strategy and decompose it in expected
gain and expected payment. It allows an application of Proposition 3 and enables a tractable payoff
comparison. By contradiction, consider a candidate equilibrium of the all-pay auction with ρ∗ = 1 in
which all participants bid according to some increasing function βS

a (x).

Definition 4 (DSa). A deviation strategy (DSa) for bidder i in the all-pay auction is:
• deviate to ρi = 0 and observe XT

i ,
• bid according to βS

a (XT
i ).

The deviation strategy DSa requires a bidder to change the source of his signal (from XS
i to XT

i ),
but follow the same bidding function βS

a (·) as before. Let the utility from the candidate equilibrium
(CE) with ρ∗ = 1 and βS

a be EU(S, βS
a |CE). Let the expected utility from DSa be EU(Ti, β

S
a |CE).

The proof of Proposition 5 shows that EU(S, βS
a |CE) < EU(Ti, β

S
a |CE) for N > 2.

In the all-pay auction, a bidder pays his own bid. In CE, the expected payment of bidder i is∫ 1

0
βS

a (xi)f(xi)dxi.

In DSS
a , expected payment is exactly the same, as both of bidder i’s available signals XT

i and XS
i

induce the same marginal distribution f(xi). Hence, expected payment in CE and DSa is the same.
The expected gain is strictly higher in DSa, as due to Proposition 3, the probability of a win is

strictly larger at almost all total values vi if there are more than two bidders.
For the case of two bidders, the expected payment in DSa and CE with ρ∗ = 1 is the same as

a bidder’s bid (and thus, payment) distribution is the same. In contrast to the N > 2 bidder case,
expected gain is also the same in CE and DSa. That is, the expected overall utility of bidder i from
CE and from DSa is identical. Whether there exists a strictly profitable deviation over a CE with
ρ∗ = 1 will depend on the characteristics of the signals. One might expect that generically, as βS is
constructed as a best response in CE after seeing XS

i , there is no reason why it should also constitute
a best response after seeing XT

i , and the bidder could strictly increase his payoff by playing a best
response to XT

i .

Lemma 6. For N ≥ 2, there exists an equilibrium with ρ∗ = 0.

The proof is by construction: learning only about the private component Ti and bidding according
to the usual IPV bidding function for the all-pay auction βT

a (x) =
∫ x

0 E
[
Vi|XT

i = x̃
]
fT (x̃)dx̃ consti-

tutes a best response to this particular information choice when the opponents also select ρ∗ = 0 and
follow the same bidding function.

Moreover, if ρ∗ = 0, no other bidder knows anything of relevance to other bidders. Signal realiza-
tions of other bidders are independent from one’s own signal for any information selection. The value
of information conditional on one’s signal alone is equal no matter which component the signal was
applied to. Due to Observation 2, any signal realization results in the same best response. Bith avail-
able signals have the same value of information for a bidder, if the opponents play CE. This establishes
existence of an equilibrium with ρ∗ = 0.
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7 Conclusion
If bidders cannot consider all possible information, a question of which variables to learn about arises.
I analyze this question in the context of auctions. In takeover auctions, out of all the multidimensional
information available about the target, which characteristics do bidders choose to focus on? Do they
want to know what matters to others – a common variable like the book value – which induces
interdependence in private information? Or do bidders prefer to focus on a private component like
their specific R&D synergies and receive independent private signals? Bidders are equally well-informed
about the object’s total value whether they select a signal about the common or the private component.

The focus of this paper is on information selection, specifically which payoff-relevant variable to
learn about. This contrasts with the literature on information acquisition, which usually asks how
much information about a single payoff relevant variable a bidder acquires.

In the SPA, information selection in equilibrium is unique. Bidders learn only about their private
component. Any candidate equilibrium in which bidders learn with non-zero probability about the
common component can be ruled out by an appropriate deviation strategy. The deviation strategy uses
the same bidding functions as the candidate equilibrium but induces independent private signals by
learning only about the private component. By employing such a deviation strategy, a bidder strictly
decreases his expected payment but retains his overall gain and winning probability. By decreasing
correlation via learning about the private component, a bidder is more likely to win in states with a
high private component, and less likely to win in states with a high common component, while there
is no effect on the overall winning probability.

This paper explores the impact of a selling mechanism on the type of information bidders select.
Information about the common component simplifies coordination and is informative about other
bidder’s bids. However, learning about a common component that matters equally for all bidders is
socially wasteful, as this information comes at the opportunity cost of not learning socially valuable
information about the private components. A designer who wishes to maximize efficiency should take
into consideration, that his auction choice might affect about which value components bidders learn.
My analysis suggests that, in such a simplified setting, the SPA is a good choice, as it is ex-ante
efficient. It induces learning only about the socially relevant variable and allocates the good efficiently.
An IPV setup arises endogenously.

A Appendix

A.1 Affiliation and Accuracy
The following definition introduces the concept of affiliation between random variables. Affiliation is a
strong form of positive correlation, and is a widely used model of statistical dependence in Economics
at the latest since the contribution of Milgrom and Weber (1982).32

32The concept of affiliation is known in the statistical literature as a multivariate total positivity
order MTP2 (Karlin and Rinott, 1980). For a comparison of affiliation with other forms of positive
correlation, see de Castro (2009) in a context of auctions, and Shaked and Shanthikumar (2007) for a
general account of positive dependence orders.
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Definition 5 (Milgrom and Weber (1982)). Consider real-valued random variables Z1, ..., Zk, and
denote a vector of realizations by z := {z1, ..., zk}. Let f(z) be the density of the realization vector z.
Denote by z ∨ z′ the component-wise maximum, and denote by z ∧ z′ the component-wise minimum
of the two vectors z and z′. Then, the random variables Z1, ..., Zk are said to be affiliated if

for all z, z′ : f(z ∨ z′)f(z ∧ z′) ≥ f(z)f(z′).

Observation 3. XS
1 and XS

2 are affiliated.

This follows from Milgrom and Weber (1982). By Theorem 1, part (ii) in their model, the random
variables XS

1 , X
S
2 and S are affiliated if their density can be expressed as the product of affiliated

non-negative functions. We have f(x1, x2, s) = fS(x1|s)fS(x2|s)h(s) with fS(·) being non-negative
and affiliated due to the strong MLRP. By Theorem 4 in Milgrom and Weber (1982), as the triple of
variables XS

1 , X
S
2 , S are affiliated, so are the two variables XS

1 and XS
2 .

Note that independence is a special case of affiliation, where above inequality in Definition 5 holds
with equality for all realizations z and z′. This implies that XT

i and XS
j are affiliated, and XT

i and
XT

j are affiliated, as they are independent due to Assumption IN.

A.2 Proofs
(The proof of Theorem 1 follows after the proof of Lemma 3, by combining the auxiliary results in
Lemma 1, Proposition 1 and Lemma 3.)

Proof of Lemma 1. The distribution of XS
i conditional on vi and XT

i conditional on vi coincide.
This is because the density of realization xi conditional on vi is hS(vi|xi)fS(xi)

hV (vi) , where hS(vi|xi) as de-
fined in Equation 1. As hS(vi|xi) = hT (vi|xi), and fS(xi) = fT (xi) via Observation 1, this establishes
that the signals XS

i and XT
i of bidder i are equally distributed conditional on vi. Therefore, also the

marginal distributions βS(XS
i ) and βS(XT

i ) coincide, conditional on vi.
Due to Assumption IN, any signal of bidder i, XS

i and XT
i , is independent from XT

j . As functions
of independent random variables are independent themselves, for any information choice K ∈ {S, Ti}
of bidder i, the random variable βS(XK

i ) is independent from βT (XT
j ). Therefore,

Pr(βS(XT
i ) ≥ βT (XT

j )|vi) = Pr(βS(XS
i ) ≥ βT (XT

j )|vi),

which establishes the proposition for the winning probabilities in Equation 8 for DS and Equation 9
for CE.

Proof of Proposition 1. For vi = 0, we have s = 0 and ti = 0. Any information selection leads to a
density f(x|0), as both signals XS

i and XT
i have same density. The density of an opponent with signal

XS
j is F (x|0). The probability of having the highest signal is

∫ 1
0 f(x|0)F (x|0)dxi = 1

2 . Similarly, for
the total value to be vi = 2, the components need to be s = 1 and ti = 1. Then, the probability of
having the highest signal with any signal is

∫ 1
0 f(x|1)F (x|1)dx = 1

2 .
Fix a total value for bidder i at vi ∈ (0, 2). Define the set the common component S, that is feasible

under this vi realization as S(vi) := {s ∈ S : ∃ti ∈ [0, 1] : vi = s + ti} = [max{0, vi − 1},min{1, vi}].
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E.g., if vi ≥ 1, we have S(vi) = [vi − 1, 1]. If vi < 1, we have S(vi) = [0, vi]. Define ŝ(vi) that bisects
this interval: ŝ(vi) := max{0,vi−1}+min{1,vi}

2 = vi

2 .

Conditional on the value for bidder i being vi, the density of the common component being equal
to s is h(s|vi) := h(s)h(vi−s)

hV (vi) . This is due to the fact that S and Ti are drawn from an identical
distribution with density h(·). Note that

∫
S(vi) h(s|vi) = 1, and h(s|vi) = h(vi − s|vi), as h(s|vi) is

symmetric around ŝ(vi).
If bidder i learns XS

i and his opponent learns XS
j , the probability of winning is

Pr(XS
i ≥ XS

j |vi) =
∫
S(vi)

∫ 1

0
f(x|s)F (x|s)h(s|vi)dxds

=
∫
S(vi)

[
1
2F (x|s)

]1

0︸ ︷︷ ︸
=1/2

h(s|vi)ds

= 1
2

∫
S(vi)

h(s|vi)ds = 1
2 .

If the common component is s, then, conditional on vi, bidder i observes a signal about his private
component ti = vi−s. If bidder i learns about his private components via observingXT

i , his probability
of a win is the following.

Pr(XT
i ≥ XS

j |vi) =
∫
S(vi)

∫ 1

0
f(x|vi − s)F (x|s)h(s|vi)dxds (15)

=
∫ ŝ(vi)

max{vi−1,0}

∫ 1

0
f(x|vi − s)F (x|s)h(s|vi)dxds (16)

+
∫ min{vi,1}

ŝ(vi)

∫ 1

0
f(x|vi − s)F (x|s)h(s|vi)dxds (17)

The last step followed by splitting up the integral in two intervals. Consider the second integral.
Using relabeling and integration by parts, we have

∫ min{vi,1}

ŝ(vi)

∫ 1

0
f(x|vi − s)F (x|s)h(s|vi)dxds

=
∫ ŝ(vi)

max{vi−1,0}

∫ 1

0
f(x|s)F (x|vi − s)h(vi − s|vi)dxds

=
∫ ŝ(vi)

max{vi−1,0}

[F (x|s)F (x|vi − s)]10︸ ︷︷ ︸
=1

−
∫ 1

0
f(x|vi − s)F (x|s)dx

h(vi − s|vi)ds

=
∫ ŝ(vi)

max{vi−1,0}
h(vi − s|vi)ds−

∫ ŝ(vi)

max{vi−1,0}

∫ 1

0
f(x|vi − s)F (x|s)dxh(vi − s|vi)ds

=1
2 −

∫ ŝ(vi)

max{vi−1,0}

∫ 1

0
f(x|vi − s)F (x|s)h(s|vi)dxds
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where the last step followed by h(s|vi) = h(vi − s) and
∫
S(vi)

h(s|vi)ds = 1. Plugging this back into

Equation 17 yields the result, Pr(XT
i ≥ XS

j |vi) = 1
2 = Pr(XS

i ≥ XS
j |vi).

Proof of Lemma 2. As fS(x|r) = fT (x|r) and FS(x|r) = FT (x|r), I drop the superscript. Fix the
value for bidder i, vi ∈ (0, 2).

For every feasible s that can arise with vi, if both bidders learn about s and bid with βS , the
winning probability is 1

2 :

Pr(XS
i ≥ XS

j |S = s, Ti = vi − s) =
∫ 1

0
f(x|s)F (x|s)dx = 1

2 .

Now consider the winning probability of bidder i with DS when facing opponent with signal XS
j .

For s = vi

2 = I − s, it is immediate that
∫ 1

0 f(x|vi − s)F (x|s)dx =
∫ 1

0 f(x|s)F (x|s)dx = 1
2 .

Take any s < vi

2 . A consequence of the strong MLRP is FOSD. Thus, for every x ∈ (0, 1):
F (x|s) > F (x|vi − s) for s < vi − s. Hence, winning probability in DS is∫ 1

0
f(x|vi − s)F (x|s)dx >

∫ 1

0
f(x|vi − s)F (x|vi − s)dx = 1

2 .

Therefore, the winning probability is larger when learning XT
i about the private value component,

if the private component realization ti = vi − s is larger than the common component realization s.
Finally, take any s > vi

2 . Similarly, due to the strong MLRP we have F (x|s) < F (x|vi − s) for all
xi ∈ (0, 1). Thus, ∫ 1

0
f(x|vi − s)F (x|s)dx <

∫ 1

0
f(x|vi − s)F (x|vi − s)dx = 1

2 .

Proof of Lemma 3. Consider statement 1. of the Lemma. For all realizations xj ∈ [0, 1], we have:

HK(xj |βS , βT , XT
j ) =

Pr(XT
j ≤ xj , β

S(XK
i ) ≥ βT (XT

j ))
Pr(βS(XK

i ) ≥ βT (XT
j ))

. (18)

The event that the opponent has signal realization XT
j = xj and bidder i has a higher signal

when learning about K ∈ {S, Ti} has density Pr(βS
i (XK

i ) ≥ βT
j (xj))fT (xj). Note that Pr(βS(XT

i ) ≥
βT (xj)) = Pr(βS(XS

i ) ≥ βT (xj)) due to Assumption IN and the same marginal distribution of XS
i

and XT
i in Observation 1. Therefore, the numerator can be rewritten in the following way and does

not depend on the information channel of bidder i:∫ xj

0
Pr(βS(XS

i ) ≥ βT (x̃j))fT (x̃j)dx̃j =
∫ xj

0
Pr(βS(XT

i ) ≥ βT (x̃j))fT (x̃j)dx̃j .

Next, I establish that the the denominator in Equation 18 is equal in CE and in DS. By Lemma
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1, we have for all vi, Pr(βS(XS
i ) ≥ βT (XT

j )|vi) = Pr(βS(XT
i ) ≥ βT (XT

j )|vi). Hence,

Pr(βS(XS
i ) ≥ βT (XT

j )) =
∫
V

Pr(βS(XS
i ) ≥ βT (XT

j )|vi)hV(vi)dvi

=
∫
V

Pr(βS(XT
i ) ≥ βT (XT

j )|vi)hV(vi)dvi

= Pr(βS(XT
i ) ≥ βT (XT

j )).

This establishes statement 1., as learning about both value components leads to the same numer-
ator and denominator in Equation 18.

Next, consider statement 2. I show that when bidder i faces a XS
j -type opponent, for all xj ∈ (0, 1)

we have HS(xj |βS , βS , XS
j ) < HT (xj |βS , βS , XS

j ). As both bidders follow the same bidding function
βS , the event of a win of bidder i translates into the event of having a higher signal than his opponent.
I depict the cumulative distributions of the looser’s signal as an integral over s by exploiting conditional
independence in Assumption CI.

The joint event of bidder i winning when learning XS
i and bidder j having a signal realization

XS
j = xj has density

∫ 1
0 f

S(xj |s)
[
1− FS(xj |s)

]
h(s)ds. If bidder i instead learns about XT

i , his
signal does not depend on S. Then, the joint event of him winning and his opponent having a signal
realization XS

j = xj has density
∫ 1

0 f
S(xj |s)

[
1− FT (xj)

]
h(s)ds =

[
1− FT (xj)

] ∫ 1
0 f

S(xj |s)h(s)ds =[
1− FT (xj)

]
fs(xj). Due to Assumption A1, I drop the superscripts of the signal distributions in the

following. For all xj ∈ (0, 1), we have

HS(xj |βS , βS , XS
j ) = 1

Pr(XS
i ≥ XS

j )

∫ xj

0

∫ 1

0
f(x̃j |s)(1− F (x̃j |s))h(s)dsdx̃j .

HT (xj |βS , βS , XS
j ) = 1

Pr(XT
i ≥ XS

j )

∫ xj

0

∫ 1

0
f(x̃j |s)(1− F (x̃j))h(s)dsdx̃j .

Note that by Corollary 1, Pr(XS
i ≥ XS

j ) = Pr(XT
i ≥ XS

j ) = 1
2 . Hence,

HS(xj |βS , βS , XS
j )−HT (xj |βS , βS , XS

j ) = (19)

= 2
∫ xj

0

∫ 1

0
f(x̃j |s)(F (x̃j)− F (x̃j |s))h(s)dsdx̃j (20)

= 2
[∫ xj

0
F (x̃j)

∫ 1

0
f(x̃j |s)h(s)dsdx̃j −

∫ xj

0

∫ 1

0
f(x̃j |s)F (x̃j |s))h(s)dsdx̃j

]
(21)

= 2
[∫ xj

0
F (x̃j)f(x̃j)dx̃j −

∫ xj

0

∫ 1

0
f(x̃j |s)F (x̃j |s))h(s)dsdx̃j

]
(22)

= 2
(
F (xj)2

2 −
∫ 1

0

∫ xj

0
f(x̃j |s)F (x̃j |s)dx̃jh(s)ds

)
(23)

=
(
F (xj)2 −

∫ 1

0
F (x̃j |s)2h(s)ds

)
. (24)

By definition, it holds that F (xj) =
∫ 1

0 F (xj |s)h(s)ds. This and the strict Cauchy-Bunyakovsky-
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Schwartz inequality yield for all xj ∈ (0, 1),

F (xj)2 =
[∫

s

F (xj |s)h(s)ds
]2
<

∫
s

h(s)ds︸ ︷︷ ︸
=1

∫
s

F (xj |s)2h(s)ds.

For all xj ∈ (0, 1), the last inequality is strict, as F (xj |s) is not constant in the variable s due to
the strong MLRP.33 This establishes that Equation 24 is negative for all xj ∈ (0, 1).

Finally, consider statement 3. If βS(1) ≤ βT (0), expected payment against a XT
j -type is trivially

zero in DS and in CE with (XS
i , β

S). If βS(1) ≤ βT (0), Lemma 1. establishes that the expected
payment in DS and the candidate equilibrium is also the same when facing a XT

j -type opponent,
conditional on a win. As in both cases, the winning probability is also the same due to independence,
this also holds for the unconditional expected payment:

EP (XS
i , β

S |XT
j , β

T ) = EP (XT
i , β

S︸ ︷︷ ︸
DS

|XT
j , β

T ).

Statement 2. establishes that when facing a XS
j -type opponent, the expected payment distribution

conditional on a win with DS is dominated by the payment distribution of the candidate equilibrium
after XS

i . As by assumption, bidding function βS is increasing, FOSD implies a higher expected
payment in the candidate equilibrium. Finally, as winning probability overall is the same in DS and
the candidate equilibrium, this implies that the unconditional expected payment in DS is also lower
than in the candidate equilibrium. Hence, we have

EP (XS
i , β

S |XS
j , β

S) > EP (XT
i , β

S︸ ︷︷ ︸
DS

|XS
j , β

S).

Therefore, overall expected payment in Equation 7 is strictly less under DS than after learning
XS

i in the candidate equilibrium with (XS
i , β

S).

Proof of Theorem 1. Corollary 1 establishes the same expected gain and total winning probability
in DS and CE. Lemma 3 establishes a strictly lower payment under DS than in CE. This rules out any
ρ∗ > 0 in equilibrium, and establishes the unique information selection ρ∗ = 0 if an equilibrium exists.

The next steps establish existence. With ρ∗ = 0, bidders are in an IPV setup. For fixed ρ∗ = 0,
it is a well known result that bidding βT (x) = E

[
Vi|XT

i = x
]
is an equilibrium in weakly dominant

strategies. Whichever profitable deviation exists without information choice, will also exist in this
setup with endogenous information selection. Thus, after learning XT

i and expecting the opponent to
learn about Tj , above bidding function is a weakly dominant strategy.

Therefore, the only deviation we need to consider for bidder i is to deviate and learn about
common component. After seeing XS

i = x, bidder i is still in an IPV setup. If his opponent also learns

33This is because the Cauchy-Bunyakovsky-Schwartz inequality
[∫ b

a
c(s)d(s)ds

]2
≤
∫ b

a
c(s)2ds ·∫ b

a
d(s)2ds is strict unless c(s) = α · d(s) for some constant α (see Hardy et al., 1934, Chapter VI). In

above argument, c(s) =
√
h(s), and d(s) =

√
h(s)F (x|s). Note that F (x|s) is not constant in s due

to the strong MLRP unless x ∈ {0, 1}.
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about his private component, bidder i has a weakly dominant strategy to bid his posterior valuation
E
[
Vi|XS

i = x
]
. By Observation 2, for all x, E

[
Vi|XS

i = x
]

= E
[
Vi|XT

i = x
]

= βT (x). Hence, after
deviating to the common component, bidder i has the same best response after each signal realization,
for any signal source. As XS

i and XT
i are distributed with equal marginal distribution F (x) and are

both independent from XT
j (which the opponent always learns in a candiadte equilibrium with ρ∗ = 0),

the deviating to component S is not strictly profitable as it induces the same expected utility as the
caniddate equilibrium with ρ∗ = 0 when bidding optimally.

Proof of Proposition 2. Let ρ∗ = 1 with bidding function βS be a candidate equilibrium (CE). Fix
the sum I = S + Ti of the two components for bidder i.

Consider first the expected payment. Note that the proof of Proposition 1 holds step by step when
instead of fixing vi, the variable I is fixed. That is, for all I,

Pr(XT
i ≥ XS

j |I) = Pr(XS
i ≥ XS

j |I) = 1
2 .

Holding the sum of the two components fixed, the winning probability in CE or in DS is unchanged
for the case of two bidders. Therefore, Lemma 3 holds. Expected payment is strictly lower in DS than
in the candidate equilibrium. This is because the proof of Lemma 3 does only rely on the bidding
function βS being strictly increasing, not on any specific functional form. Therefore, varying the utility
function does not change the observation that expected payment is strictly less under DS than in CE.

Next, consider the expected gain from DS. Given the sum I, a feasible common component real-
ization lies in the interval s ∈ [s(I), s(I)] := [max{I − 1, 0},min{I, 1}]. Denote by h(s|I) := h(s)h(I−s)

hI(I)
the density of the common component conditional on I, where the density of the sum of the two
components I is hI(I) =

∫ 1
0 h(s)h(I − s)ds.

The cumulative distribution function of the common component S, conditional on I and on bidder
i winning in the CE is for s ∈ [s(I), s(I)]:

JS(s|I) := Pr(S ≤ s|XS
i ≥ XS

j , I)

= 1
Pr(XS

i ≥ XS
j |I)

∫ s

s(I)
h(s̃|I)

∫ 1

0
f(x|s̃)F (x|s̃)dx︸ ︷︷ ︸

= 1
2

ds̃

= 2
∫ s

s(I)
h(s̃|I)1

2ds̃.

JS(s|I) = 0 for all s ≤ s(I), where there exists no Ti large enough to sum up to I. Furthermore,
JS(s|I) = 1 for all s ≥ I.

Similarly, let the following be the cumulative distribution function of the common component S,
conditional on I and on bidder i winning when following DS.
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JT (s|I) = Pr(S ≤ s|XT
i ≥ XS

j , I)

= 1
Pr(XT

i ≥ XS
j |I)

∫ s

s(I)
h(s̃|I)

∫ 1

0
f(x|I − s̃)F (x|s̃)dxds̃

= 2
∫ s

s(I)
h(s̃|I)

∫ 1

0
f(x|I − s̃)F (x|s̃)dx︸ ︷︷ ︸

4(s|I)

ds̃.

As before, JT (s|I) = 0 for all s < s(I) and JT (s|I) = 1 for all s ≥ s(I).
Next, I show that JS(s|I) is FOSD over JT (s|I). Take any s ≤ I

2 . Note that the proof of Lemma
2 holds step-by-step, if conditioning on I instead of vi. By Lemma 2, 4(s|I) ≥ 1

2 . Therefore, for all
s ≤ I

2 , we have J
T (s|I) ≥ JS(s|I). Note that at s = s(I), JS(s(I)|I) = JT (s(I)|I) = 1, as no higher S

can feasibly occur if the sum of the two components is I. Assume by contradiction that there exists a
s′ ∈ ( I

2 , s(I)) such that JT (s′|I) < JS(s′|I). Then, again due to Lemma 2, 4(s|I) < 1
2 for all s ∈ ( I

2 , I].
Therefore, if JT (s′|I) < JS(s′|I), we must have JT (s′′|I) < JS(s′′|I) for all s′′ > s′. However, this
contradicts JS(I|I) = JT (I|I) = 1. This establishes FOSD of JS over JT : for all s ∈ [s(I), s(I)], we
have JT (s|I) ≥ JS(s|I).

Conditional on the sum of the two components being I and bidder i winning, his expected gain in
the CE is: ∫ s(I)

s(I)
u(s, I − s)dJS(s|I).

Note that with Vi = S + Ti, the above integral reduces to u(s, I − s) = I.
Conditional on the sum of the two components being I and bidder i winning, the expected gain

from DS is: ∫ s(I)

s(I)
u(s, I − s)dJT (s|I).

By assumption (property 3. of the generalized utility function), u(s, I − s) is a non-increasing
function. Thus, FOSD implies that

∫ 1
0 u(s, I − s)jS(s|I)ds ≤

∫ 1
0 u(s, I − s)jT (s|I)ds. This establishes

the result: DS leads to a weakly higher expected gain conditional on a win, the same probability of a
win, and a strictly lower payment.

Proof of Proposition 3. The cumulative distribution of the highest signal among N − 1 bidders
who all learn about the common component S = s is

G(y) := Pr(Y S
i ≤ y) =

∫ 1

0
F (y|s)N−1h(s)ds.

For vi = 0, we have s = 0 and ti = 0, bidder i’s signal follows density f(x|0) for any information
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selection. The probability of winning for bidder i is
∫ 1

0 f(xi|0)F (x|0)N−1dxi = 1
N . For vi = 2 (i.e.,

s = 1 and ti = 1), winning probability of bidder i with any signal is
∫ 1

0 f(x|1)F (x|1)N−1dx = 1
N . This

is because in those two extreme examples, the signal is equally distributed in signals XT
i and XS

i .
Next, consider a total value for bidder i at vi = vi ∈ (0, 2). Define the feasible set of the common

component by S(vi), and let ŝ(vi) be the common component disecting this interval, as defined in the
proof of Proposition 1. Similarly, let h(s|vi) := h(s)h(vi−s)

hV (vi) . As before, we have
∫
S(vi)

h(s)h(vi−s)
hV (vi) ds = 1

and h(s|vi) = h(vi − s|vi).
First, consider the probability of bidder i having the highest signal realization, if bidder i observes

the outcome of the experiment XS
i about the common component.

Pr(XS
i ≥ Y S

i |vi) =
∫
S(vi)

∫ 1

0
f(x|s)F (x|s)N−1h(s|vi)dxds

=
∫
S(vi)

[
1
n
F (x|s)N

]1

0︸ ︷︷ ︸
=1/N

h(s|vi)ds

= 1
N

∫
S(vi)

h(s|vi)ds = 1
N
.

Learning about the common component as all the other bidders yields a probability of 1
N of having

the highest signal realization, for every realization of vi in this symmetric setup.
Next, consider the probability of bidder i having the highest signal realization, if he learns XT

i

and is the only bidder learning about his private component.

Pr(XT
i ≥ Y S

i |vi) =
∫
S(vi)

∫ 1

0
f(x|vi − s)F (x|s)N−1h(s|vi)dxds. (25)

I use the following abbreviation for clarity of presentation: λ(s, x|vi) := h(s|vi)F (x|s)N−2. Then,
the probability of having the highest signal with XT

i can be expressed as

Pr(XT
i ≥ Y S

i |vi) =
∫
S(vi)

∫ 1

0
f(x|vi − s)F (x|s)λ(s, x|vi)dxds

=
∫
S(vi)

∫ 1

0

N − 1
N

f(x|vi − s)F (x|s)λ(s, x|vi)dxds

+
∫
S(vi)

∫ 1

0

1
N
f(x|vi − s)F (x|s)λ(s, x|vi)dxds.

Integrating the inner integral of the second summand by parts yields
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∫
S(vi)

∫ 1

0

1
N
f(x|vi − s)F (x|s)λ(s, x|vi)dxds

=
∫
S(vi)

1
N

∫ 1

0
f(x|vi − s)F (x|s)N−1dxh(s|vi)ds

=
∫
S(vi)

1
N

[F (x|vi − s)F (x|s)N−1]1
0︸ ︷︷ ︸

=1.

−
∫ 1

0
(N − 1)f(x|s)F (x|s)N−2F (x|vi − s)dx

h(s|vi)ds

= 1
N

∫
S(vi)

h(s|vi)ds︸ ︷︷ ︸
=1.

−
∫
S(vi)

∫ 1

0

N − 1
N

f(x|s)F (x|s)N−2F (x|vi − s)h(s|vi)dxds

= 1
N
−
∫
S(vi)

∫ 1

0

N − 1
N

f(x|s)F (x|vi − s)λ(s, x|vi)dxds.

Plugging this back into equation 26 gives the following expression:

Pr(XT
i ≥ Y S

i |vi) = (26)

1
N

+
∫
S(vi)

∫ 1

0

N − 1
N

[f(x|vi − s)F (x|s)− f(x|s)F (x|vi − s)]λ(s, x|vi)dxds. (27)

I show that the second summand in equation 27 is non-negative. For clarity of presentation, define
µ(s, x|vi) := f(x|vi − s)F (x|s)− f(x|s)F (x|vi − s). Plugging in this notation and changing the order
of integration in equation 27 yields∫

S(vi)

∫ 1

0

N − 1
N

[f(x|vi − s)F (x|s)− f(x|s)F (x|vi − s)]λ(s, x|vi)dxds (28)

=
∫ 1

0

∫
S(vi)

N − 1
N

µ(s, x|vi)λ(s, x|vi)dsdx (29)

=N − 1
N

∫ 1

0

[∫ ŝ(vi)

max{vi−1,0}
µ(s, x|vi)λ(s, x|vi)ds+

∫ min{vi,1}

ŝ(vi)
µ(s, x|vi)λ(s, x|vi)ds

]
dx. (30)

Note that the second summand can be rewritten as∫ min{vi,1}

ŝ(vi)
µ(s, x|vi)λ(s, x|vi)ds =

∫ ŝ(vi)

max{vi−1,0}
µ(vi − s, x|vi)λ(vi − s, x|vi)ds

= −
∫ ŝ(vi)

max{vi−1,0}
µ(s, x|vi)λ(vi − s, x|vi),

where the first step was by changing the label of the integration variable, and the second line
followed from µ(s, x|vi) = −µ(vi − s, x|vi). Plugging this back into equation 30 yields:
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N − 1
N

∫ 1

0

∫ ŝ(vi)

max{vi−1,0}
µ(s, x|vi) [λ(s, x|vi)− λ(vi − s, x|vi)] dsdx.

Consider the expression in the square brackets in the inner integral first,

λ(s, x|vi)− λ(vi − s, x|vi) = h(s|vi)
(
F (x|s)N−2 − F (x|vi − s)N−2) .

For N = 2, the expression above is zero, as the term in the brackets is zero for any s, x or vi, which
establishes the theorem for two bidders: winning probability in equation 27 is 1

2 .
For N > 2, the strong MLRP and thus, FOSD34 imply: for all a < b and for all x ∈ (0, 1), we have

F (x|a) > F (x|b). As the integral is below ŝ(vi), we have s < vi − t. Therefore, for x ∈ (0, 1):

λ(s, x|vi)− λ(vi − s, x|vi) > 0.

Furthermore, note that µ(s, x|vi) ≥ 0 is a reverse hazard rate condition f(x|vi − s)F (x|s) −
f(x|s)F (x|vi − s) ≥ 0. A well-known implication of the MLRP is that for all a < b, we have reverse
hazard rate dominance

f(x|a)
F (x|a) ≤

f(x|b)
F (x|b) .

Due to s < vi − s, it immediately follows that µ(s, x|vi) ≥ 0 in the entire domain of integration.
This establishes the non-negativity in the second summand of equation 27. Thus, for N > 2 and
x ∈ (0, 1) we have Pr(XT

i ≥ Y S
i |vi) > 1

N .

Proof of Lemma 4. As bidders follow the same bidding function βT
f in the candidate equilibrium

and in DS
f , after any information choice a bidder wins if and only if he has the highest signal

realization.
In the candidate equilibrium, there are four possibilities for bidder i:

1. S = Ti = Tj with probability ε2 (denote the observed signals XT =S
i and XT =S

j ),

2. Ti 6= S 6= Ti with probability (1− ε)2 (denote the observed signals XT 6=S
i and XT 6=S

j ),35

3. Ti = S 6= Tj with probability ε(1− ε),

4. Ti 6= S = Tj with probability ε(1− ε).

Consider the winning probability of bidder i conditional on vi in each of those four possibilities.
In possibility 1., if Vi = vi, this implies that S = Ti = vi/2.

Pr(XT =S
i ≥ XT =S

j |vi) =
∫ 1

0
f(xi|S = vi/2)F (xi|S = vi/2)dxi = 1

2 .

34For implications of the MLRP, like FOSD and reverse hazard rate dominance, see Milgrom and
Weber (1982).

35Note that the probability of both components S and Ti being drawn independently but having the
same realization has zero probability as the distribution of each component has no mass points.
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In possibility 4., the winning probability is:

Pr(XT 6=S
i ≥ XT =S

j |vi) =
∫ 1

0

∫ 1

0
f(xi|vi − s)F (xi|s)dxi

h(s)h(vi − s)
hV(vi)

ds = 1
2 .

The last equality follows from the proof of Proposition 1 (it is the same equation as Equation 25)
for the case of two bidders.

Furthermore, note that winning probabilities conditional on a win in possibility 2. and 3. are the
same, as the following shows:

Pr(XT =S
i ≥ XT 6=S

j |vi) =
∫ 1

0

∫ 1

0
f(xi|s)F (xi)dxi

h(s)h(vi − s)
hV(vi)

ds

Pr(XT 6=S
i ≥ XT 6=S

j |vi) =
∫ 1

0

∫ 1

0
f(xi|t)F (xi)dxi

h(t)h(vi − t)
hV(vi)

dt.

Therefore, in the candidate equilibrium, total winning probability conditional on vi is:

(
ε2 + ε(1− ε)

)︸ ︷︷ ︸
1. and 4.

1
2 +

(
(1− ε)2 + ε(1− ε)

)︸ ︷︷ ︸
2. and 3.

Pr(XT =S
i ≥ XT 6=S

j |vi)

= ε

2 + (1− ε) Pr(XT =S
i ≥ XT 6=S

j |vi).

If the bidder deviates to DSf instead, he always observes a signal XS
i based on the realization of

S. For his opponent, there are two possibilities: either his opponent’ private component is Tj 6= S with
probability (1− ε), or it is Tj = S with probability ε. Winning probabilities in both cases conditional
on vi are:

Pr(XS
i ≥ XT =S

j |vi) =
∫ 1

0
f(xi|S = vi/2)F (xi|S = vi/2)dxi = 1

2 .

Pr(XS
i ≥ X

T 6=S
j |vi) =

∫ 1

0

∫ 1

0
f(xi|s)F (xi)dxi

h(s)h(vi − s)
hV(vi)

ds = Pr(XT =S
i ≥ XT 6=S

j |vi).

Therefore, total winning probability of bidder i conditional on DSf is also

ε

2 + (1− ε) Pr(XT =S
i ≥ XT 6=S

j |vi).

This establishes that winning probability is equal at every vi in the candidate equilibrium and
DS

f . Total expected gain is: ∫
V
vihV Pr(i wins|vi)dvi

Therefore, overall expected gain in the candidate equilibrium and in the DSf is the same.

Proof of Lemma 5. Consider the distribution of signals of bidder i conditional on winning in the
candidate equilibrium, i.e. the distribution of the first order statistic. For the same four possibilities
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as in Lemma 4, we have the following distributions:

1. M(xi|Ti = S, Tj = S) := Pr(Xi ≤ xi|XT
i ≥ XT

j , Ti = S = Tj) = HS(xi|βS
f , β

S
f , X

S
j ),

2. M(xi|Ti 6= S, Tj 6= S) := Pr(Xi ≤ xi|XT
i ≥ XT

j , Ti 6= S 6= Tj) = HT (xi|βS
f , β

S
f , X

T
j ),

3. M(xi|Ti = S, Tj 6= S) := Pr(Xi ≤ xi|XT
i ≥ XT

j , Ti = S 6= Tj) = HS(xi|βS
f , β

S
f , X

T
j ),

4. M(xi|Ti 6= S, Tj = S) := Pr(Xi ≤ xi|XT
i ≥ XT

j , Ti 6= S = Tj) = HT (xi|βS
f , β

S
f , X

S
j ).

The last inequalities followed by definition of HK as defined in the main part of section 6.1. Due
to independence between the signals of the bidders, and the same marginal distribution of both signals
of i, we have

HT (xi|βS
f , β

S
f , X

T
j ) = HS(xi|βS

f , β
S
f , X

T
j ).

Furthermore, as established in the main text of section 6.1 in Inequality 14, increasing correlation
decreases the first order statistic. That is, for all xi ∈ (0, 1), we have

HT (xi|βS
f , β

S
f , X

S
j ) < HS(xi|βS

f , β
S
f , X

S
j ).

Hence, the overall distribution of the first oder statistic in the candidate equilibrium is

MC(xi) = ε2︸︷︷︸
1.

HS(xi|βS
f , β

S
f , X

S
j ) + ε(1− ε)︸ ︷︷ ︸

4.

HT (xi|βS
f , β

S
f , X

S
j )

+
(
(1− ε)2 + ε(1− ε)

)︸ ︷︷ ︸
2. and 3.

HT (xi|βS
f , β

S
f , X

T
j ).

If bidder i instead plays DSf , he observes always a signal about XS
i . With probability ε, his

distribution in case of a win is HS(xi|βS
f , β

S
f , X

S
j ) (if his opponent’s private and common component

are the same), and with probability (1 − ε), his distribution in case of a win is HS(xi|βS
f , β

S
f , X

T
j ).

Thus, his overall distribution of his signal conditional on winning is

MDS(xi) = εHS(xi|βS
f , β

S
f , X

S
j ) + (1− ε)HS(xi|βS

f , β
S
f , X

T
j ).

In Inequality 14 I establish that for all xi ∈ (0, 1), we haveHT (xi|βS
f , β

S
f , X

S
j ) < HS(xi|βS

f , β
S
f , X

S
j ).

This in turn implies that for all xi ∈ (0, 1), the distribution of winning bids under the candidate equi-
librium is FOSD over DSf .

MDS(xi) ≥MC(xi).

Therefore, expected payment is strictly higher under the candidate equilibrium than in DSf .

Proof of Proposition 4. The proof follows by combining the following two results as described in
the main text. Lemma 4 shows that winning probability and expected gain from the deviation strategy
DS

f is in the deviation strategy and in the candidate equilibrium. Lemma 5 establishes that DSf

leads to a strictly lower expected payment. Hence, DS is a strictly profitable deviation.

Proof of Proposition 5. The proof is by contradiction. I show that expected payoff from DSa is
higher than in a CE with ρ∗ = 1. Assume that in the candidate equilibrium, ρ∗ = 1 and bidders follow
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a strictly increasing pure bidding function βS
a (x). Denote by Yi the highest signal realization of all

bidders but bidder i.
The expected payment of bidder i in the CE is:∫ 1

0
βS

a (xi)fS(xi)dxi.

The expected payment of bidder i from the DSa is:∫ 1

0
βS

a (xi)fT (xi)dxi.

Due to symmetry, for all x ∈ [0, 1], we have fT (xi) = fS(xi) according to Observation 1. Hence,
the expected payment in the candidate equilibrium is the same as in DSa.

Next, consider the expected gain from participating in the auction. Fix a value vi for bidder i, as
in the preceding sections. In CE and in DSa, bidder i wins if he has the highest signal realization, as
in both, bidders follow the same bidding function βS

a (·). Formally, the winning probability of bidder i
for a fixed value vi under both regimes is:

CE: Pr(βS
a (XS

i ) ≥ βS
a (Y S

i )|vi) = Pr(XS
i ≥ Y S

i |vi)︸ ︷︷ ︸
?A

,

DSa : Pr(βS
a (XT

i ) ≥ βS
a (Y S

i )|vi) = Pr(XT
i ≥ Y S

i |vi)︸ ︷︷ ︸
?AA

.

For N > 2, by Proposition 3, the probability of a win is strictly higher with DSa than with CE
for all vi ∈ (0, 1). Hence, ?AA > ?A for all vi ∈ (0, 2). Winning probability in DSa is strictly higher
than in CE for almost all vi, for the same expected payment. DSa is a strictly profitable deviation.

Proof of Lemma 6. Fix ρ∗ = 0. This is the standard symmetric IPV setting, with the bidding
function in the main text being a best response if all other bidders follow it. That is, given fixed
ρ∗ = 0, this bidding function consitutes a best response for both bidders.

The only part of the proposition left to be shown, is that no bidder has a profitable deviation that
involves a different information choice variable ρi. Consider bidder i deviating to ρi 6= 0. Note that
the expected utility is a linear combination of the payoff after observing XS

i with probability ρi, and
XT

i with probability (1 − ρi). Therefore, it suffices to consider the case ρi = 1 and showing that it
does not lead to a strictly higher payoff than ρi = 0.

Due to the Independence Assumption IN, neither XT
i nor XS

i contain information about the
opponent’s signal due to Assumption IN. Furthermore, the value of the object conditional on a win
does not depend on bidder i’s information choice due to Observation 2 and the irrelevance of the
opponent’s information. Therefore, as the choice of ρi impacts neither the joint distribution, nor
expected valuation conditional on a win, each bidder is indifferent between each ρi ∈ [0, 1] and plays the
same best response after any signal realization (no matter its source). Therefore, the classic equilibrium
of the all-pay auction is also an equilibrium of this game that involves information selection.
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