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Chapter 7
UNIT ROOT AND COINTEGRATION TESTS FOR SPATIALLY DEPENDENT PANEL DATA

January 21, 2018
Introduction

In the previous chapter we noted two major methodological problems with spatial vector autoregressions. The first is that the SpVAR parameters do not identify the parameters of the underlying structural model from which the SpVAR is derived. Specifically, the contemporaneous structural parameters are under-identified. Moreover, the identification deficit increases with the number of state variables. Since the state variables are likely to depend on each other during the current time period, this problem has profound existential implications. It effectively means that structural hypotheses cannot be tested empirically by SpVARs. SpVARs may nevertheless be useful for prediction, data description, and ex post narratives, but they have little epistemological value. 


The second methodological problem is that the state variables in SpVARs must be stationary. Since most economic data are nonstationary, SpVAR practitioners stationarize their data by various means, e.g. first-differencing the data if they are difference stationary, and by detrending them if they are trend stationary. In chapter 2 we explained that testing hypotheses using first-differenced or detrended data is not equivalent to testing hypotheses regarding the levels relationship between these variables. Since economic theory is mostly about levels rather than differences, this means that even if there were no identification deficit, SpVARs could not be used for purposes of hypothesis testing. 


In chapter 2 we recounted how cointegration theory resolved these methodological impasses, first for nonstationary time series in the late 1980s, and subsequently for nonstationary panel data in the 2000s. In the present chapter we extend cointegration theory to nonstationary spatial panel data. This methodological agenda has two natural parts. In the first, we discuss unit root tests for spatial panel data, which are different from their counterparts in chapter 2, where it was assumed that the panel units are independent as e.g. in the IPS statistic (Im, Pesaran and Shin 2003), or it was assumed that the cross section dependence is strong (Pesaran 2007). What happens when the cross-section dependence is weak and therefore spatial? Surprisingly, the literature is silent on this matter. For example, it is not mentioned by Baltagi (2013, chapter 13), Elhorst (2014) and Pesaran (2015, chapter 30). The second component concerns cointegration tests when the cointegrating vector includes spatial lagged dependent variables. Should such variables be treated as other nonstationary variables, or does their spatial status make them special? Here too the literature is silent. In this chapter we are primarily concerned with filling these methodological voids by developing panel unit root and panel cointegration tests when the data are spatial. In chapters 8 and 9 we provide empirical illustrations of these ideas.


Like us, Yu, de Jong and Lee (2012) study panel cointegration when the data are nonstationary. However, their approach is different to ours. They seek to estimate all the parameters in equation (6.4a) including the parameters of lagged dependent variables () and lagged spatial lags ((). This ambitious agenda requires them to use concentrated likelihoods in which temporally lagged variables are concentrated out as they are in the method of Johansen described in chapter 2. They rely on the assumption that the parameter estimates are normally distributed, which enables them to use t-statistics etc to carry out hypothesis tests regarding the specification of cointegrating vectors. They use Monte Carlo methods to show that if the variables (y, 
[image: image110.wmf]and x) are cointegrated, their proposed estimators have satisfactory finite sample properties. However, they do not provide statistical tests and associated critical values for spatial panel cointegration, i.e. when the null hypothesis is no cointegration. In short, Yu et al assume what we seek to test.
 We spatialize Pedroni’s approach (described in chapter 2), which is based on OLS, and which does not require the estimation of ( and (. Although less ambitious, this agenda nevertheless tests for spatial cointegration between y, 
[image: image2.wmf]y
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 and x in equation (6.4a). We think that Occam’s Razor attaches a premium to less ambitious methods provided, of course, that they test the same hypotheses. Moreover, we provide critical values for spatial panel cointegration tests, instead of relying as do Yu et al that these variables are indeed cointegrated.
Caveat
There are many empirical examples of panel data models in which T is relatively large. For example, the Penn World Tables cover many countries over many years. When T is large we think that there is no need to resort to panel data econometrics because there are sufficient observations to test hypotheses for each panel unit. If panel units are homogeneous, it makes no difference if the data are pooled or not. If, as in general, panel units are heterogeneous, pooling the data may enforce homogeneity when it is not appropriate. One size does not fit all. This is especially the case in macroeconomics where models that suit one country do not necessarily suit another. Hypothesis testing with panel data econometrics runs the risk of rejecting hypotheses despite the fact that these hypotheses may be true for some panel units. It also runs the risk of rejecting hypotheses under the assumption of homogeneity when these hypotheses are true under the assumption of heterogeneity.  


In our view data pooling only makes sense when T is relatively small. In this case there are insufficient observations to estimate separate models for each panel unit. However, there are NT observations if the data are pooled. It is therefore tempting to pool the data, especially when the alternative is to do nothing at all. The price of pooling is the imposition of homogeneity, even though this may be inappropriate.    
Unit Roots
In chapter 2 our preferred panel unit root test was equation (2.2), which we repeat here for convenience: 
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where the ('s are iid and independent across panel units. Notice that equation (1) allows each panel unit to have a different root (πi), which is why we prefer it. The null hypothesis in IPS is πi =1. The IPS test statistic (equation (2.5)) is based on the average of the Dickey – Fuller (DF) statistics estimated for each panel unit. According to the central limit theorem this average tends to be normally distributed as the number of panel units increases. The critical values calculated by IPS take account of the sample sizes in terms of the number of panel units (N) and time periods (T). 


The IPS test has been extended to allow for strong cross-section dependence in the ('s (equation (2.6)).  As we explain further in chapter 10, this dependence is not spatial because it is induced by a common factor, and is therefore unrelated to the distance between panel units. Baltagi et al (2007) investigated the implications of spatial autocorrelation (SAC) for the size of panel unit root tests, such as IPS, designed for independent panel units. They assumed that:
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where (i are SAC coefficients and e is iid. They found that the IPS and other tests become undersized especially when the SAC coefficient exceeds 0.4. Mild but significant spatial autocorrelation does not greatly impair the statistical power of tests such as IPS. However, Baltagi et al stopped short of suggesting a panel unit root test designed specifically for spatially dependent data. 
In this chapter we develop unit root tests for spatial panel data in which the cross-dependence is weak. We provide the asymptotic theory for these tests. In common with other unit root tests, the distribution for the test statistic must be obtained numerically because it does not have an analytical counterpart. We therefore carry out Monte Carlo simulations to compute critical values of panel unit root tests for spatially dependent panel data. However, unlike Baltagi et al (2007) we assume that spatial dependence is induced by spatial lags (SAR) rather than spatial autocorrelation (SAC). We suggest two DGPs of interest:

[image: image5.wmf])

3

(

~

)

1

(

)

3

(

~

)

1

(

1

1

1

b

y

y

y

a

y

y

y

it

it

i

it

i

i

it

it

it

i

it

i

i

it

e

l

p

a

e

l

p

a

+

+

-

+

=

D

+

+

-

+

=

D

-

-

-


where ( is assumed to be iid and is therefore spatially independent. In equation (3a) the SAR coefficient is contemporaneous, whereas in equation (3b) it is temporally lagged. We take the view that while SAC and SAR may coexist, SAC is likely to be a symptom of misspecification of the spatial dynamics of the model, as discussed in chapter 3. This view is the spatial counterpart to the principle in time series models that autocorrelation is a symptom of dynamic misspecification (Hendry 1995). Therefore, appropriate SAR specification tends to obviate the need for SAC. Assuming that spatial dependence is induced by SAR rather than SAC complicates our task because OLS estimates of SAR coefficients ((i) are typically inconsistent and biased. Specifically, we “spatialize” the IPS panel unit root test in which the parameters of the panel units are assumed to be heterogeneous. Since our proposed test allows for spatial dependence, we refer to it by “SpIPS”.

The Case of N = 2
In spatial DGPs such as equations (3) there is a unit root when π + ( = 1. This proposition may be demonstrated for equation (3a) in the simplest symmetric case in which N = 2:
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where (1 and (2 are iid and mutually independent. The solutions for y1 and y2 are:
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where L denotes the temporal lag operator. Since the denominator is quadratic, there are two roots, (1 and (2, which are the solution to the characteristic equation:
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Therefore, the roots are equal to:
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If π + ( =1 one of these roots is 1 and the other is π/(2 - π) < 1. The same is true in the asymmetric case in which π and ( vary by spatial unit. For example, if π1 = 0.4 and π2 = 0.6, (1 = 1 and (2 =0.315. In general, the number of roots is N, of which one root is 1 and the other roots are less than one in absolute value. The Wold representation for equation (5a) in the presence of a unit root (π + ( = 1) is:
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Equation (4g) generates the impulse responses for (y1t with respect to (1t-( and (2t-(. Solving equation (4g) for y1t gives:
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The first two moments generated by equation (5e) are:
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According to equation (4i) the unconditional expected value of yit is zero regardless of when it is measured. However, according to equation (4j) its unconditional variance varies directly with time (t) because of the presence of a unit root. The last term in equation (4j) is induced by the stationary root, and tends to zero with t. It may be shown that E(y2t) = 0 and its variance increases linearly with time. Hence, as expected, y1 and y2 are nonstationary. Notice that although the temporal autoregressive coefficient (π) may be less than 1, nonstationarity is induced because of the spatial autoregressive coefficient ((). Indeed, y1 and y2 will be stationary when π exceeds 1 provided ( is sufficiently negative. Therefore, spatiotemporal unit roots differ from temporal unit roots discussed in chapter 2 and spatial unit roots discussed in chapter 5. 

The OLS estimators for π and ( are estimated separately for each panel unit:
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The probability limits of equation (5a) and (5b) are taken with respect to T alone, since N is fixed in spatial data. These probability limits (dropping subscript i for convenience in S) are:
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Let Bi(r) denote the Wiener process for yi, as discussed in chapter 2. For example,:
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Since 
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which does not have an analytical distribution. Therefore terms such as 
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 are Op(T) because y is nonstationary whereas ( is stationary. Hence, under the null of (i + (i = 1, the OLS estimators for (i and (i are T super-consistent because in equations (5a) and (5b):
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Under the null, the distributions of these OLS estimates cannot be individually normal for three reasons. Although 
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 are not. Second, as we saw in chapter 2, products of normally distributed random variables cannot be normally distributed. The same applies to ratios of asymptotically normal random variables. Therefore, these distributions have to be calculated by Monte Carlo simulation methods. However, the cross-section average of the N OLS estimates of π and ( tend to be normally distributed due to the central limit theorem.
Equations (4a) and (4b) do not have intercepts, or specific effects. This explains why the unconditional expected values of y1 and y2 are zero in equation (4i). Had specific effects, α1 and α2, been specified in equations (4a) and (4b) equation (4i) would be:
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The unconditional expected value depends linearly with time (t). Hence, y1 and y2 are nonstationary because their means as well as their variances are not independent of time. The specific effects induce drift in the DGPs for y1 and y2. Note, however, that the unconditional expected values depend on both specific effects because of the spatial dependence between y1 and y2. 

In chapter 2 we saw that drift increases the super-consistency of OLS from T to T1½. The same applies here. For example, it may be shown e.g. Syy ~ Op(T3) whereas 
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so that the equations (5h) and (5i) are Op(T-1½). Hence, the specification of specific effects enhances super-consistency from T to T1½ - consistency.  
The Case with N > 2
In the previous discussion we simplified matters by setting N = 2 in the interest of expositional transparency. The same principles apply in the more general case when N > 2. Equation (4a) becomes:
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Where αi denote specific effects. Equation (6a) vectorizes to:
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where y and α are N-vectors, and ( and ( are diagonal NxN matrices with πi and (i on their leading diagonals. The solution for yt is:
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which is a panel VAR model. The Wold representation for equation (6c) is:
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Equation (6d) generates the spatiotemporal impulse responses of yt with respect to (t-p. The matrix IN - A( has N roots, which lie inside the unit circle if y is stationary. One of these roots must equal 1 if ( = IN - ( because πi + (i = 1 for all spatial units. More generally a unit root is induced when 
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In summary, when 
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 = 1 there must be a unit root in which case the data cannot be stationary. This result was first noted by Elhorst (2001). In non-spatial DGPs there is a unit root when π is 1. By contrast, in spatial DGPs there may be a unit root when π is less than 1. Of course, if  ( is sufficiently negative there may not be a unit root even when π exceeds 1. If there happens to be a unit root because π + ( = 1, the functional central limit theorem states that the data must be normalized by root T in which case they are asymptotically normally distributed. OLS estimates of π and ( are super-consistent under the null hypothesis. Indeed, they are T-consistent instead of root T consistent. The specific effects in equation (6a) imply that OLS estimates of π and ( T1½ – consistent. This means that under the null hypothesis of spatiotemporal unit roots, SAR coefficients may be estimated without recourse to ML, instrumental variables or the generalized method of moments. Since analytical solutions are unavailable for the distribution of estimates of π and ( under the null, we resort to numerical simulation methods to obtain them. 
Monte Carlo Analysis
In what follows we begin by using Monte Carlo methods to obtain the distribution of πi = 1 given (. This exercise parallels Baltagi et al (2007) except we assume that there is a spatial lag as in equation (4a) rather than spatial autocorrelation as in equation (2). Subsequently, we obtain the distribution of estimates of πi + (i under the null hypothesis πi + (i = 1. We think that both exercises are of interest. The first is of interest because economic variables tend to grow over time irrespective of spatial dependence. As noted in chapter 2, the Solow growth model predicts that logarithms of GDP, wages, investment etc should be trend stationary, whereas endogenous growth theory predicts that these variables should be difference stationary. In either case these variables are nonstationary. Therefore, in spatial panel data we expect that π = 1 regardless of  (. In addition, for reasons given in chapter 5, we expect that ( is positive but less than one. For this reason, spatial panel data are expected to have roots that exceed one.


The second exercise is of interest in the context of the “near unit root” critique. The null hypothesis in the panel unit root tests discussed in chapter 2 is π = 1. Suppose, instead, that the null hypothesis is π = 0.99, i.e. there is no unit root. In practice, it is difficult to distinguish between the two. In nonspatial panel data this may be an issue. However, in spatial panel data matters are different because unit roots depend on ( and . not just on π. The null hypothesis of π + ( = 1 is less vulnerable, therefore, to the “near unit root” critique. Unit roots in spatial panel data are conceptually different to their counterparts in nonspatial panel data. 
Since the original efforts of Dickey and Fuller, unit roots tests have been presented in terms of estimates of 1 - π divided by the standard deviation of π, i.e. as Student t statistics, which, however, do not have t distributions. This tradition has extended to panel unit root tests. For example, IPS is based on the average of the t statistics for the individual panel units. A less popular but equivalent alternative is to present unit root tests in terms of T(π – 1), as in Hamilton (1994, tables ???), where the critical values are based on the percentiles of the distribution of π under the null of π = 1. We adopt this presentation in what follows. We begin with obtaining the distribution 
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We set y0 = ( = 0, πi = 1 and (i = (, and draw N independent values of (t ~ iiN(0,1) for t = 1,2,…,T, i.e. NT in all. These draws of ( are used to generate yt using equation (6a). W is assumed to be rook-square (as in chapter 5) with wij = ¼ for contiguous spatial units and zero otherwise. Spatial weights sum to one since each unit has four neighbors, except at the edge and corners of the lattice where the weights sum to ¾ and ½ respectively. This means appropriately that there is less spatial spillover at the corners and along the edges of the lattice than inside the lattice. Topology matters, as it did in chapter 5. Since the lattice is square, each side is the square root of N. Therefore, if N = 100 the lattice is 10 x10 and the epicenter of the lattice is 5 spatial units away from its edge. Next, the generated data for yit are used to estimate πi heterogeneously for all spatial units. These estimates are averaged to obtain 
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, or π bar. These steps are repeated using 10,000 Monte Carlo trials to obtain the distribution of π bar under the null (π bar = 1). 

The Distribution of  ( + ( 

When π =1 and (= 0 we reproduce the IPS test statistic as expected because this assumes no cross-section dependence. This exercise is based on OLS because it does not involve estimating (. Matters are different when ( is not zero because, as described in chapter 3, OLS estimates of spatial lag parameters (() are upward biased and not consistent. Although OLS is super-consistent under the null, πi and (i should be estimated by ML or IV if the unit root hypothesis is rejected. We choose IV and instrument the spatial lag 
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and its first and second order lagged spatial lags (
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 ). These instruments contain identifying information in the temporal lags of unit i’s neighbors and its neighbors’ neighbors as well as the lagged value of y in unit i’s neighbors.  In principle, we should also use information on higher order neighbors, but since the lattice is small (10x10) we rapidly hit the edge of the lattice when using higher order neighbors. Therefore, we use truncated IV estimation (Lee 2003). 


Indeed OLS induces, as expected, positive bias in ( and negative bias in π. However, this bias disappears with truncated IV estimation. For each spatial unit we obtain 10,000 estimates of (i and πi. Their typical distributions are plotted in Figures 1 and 2. Figure 1 plots the distribution of truncated IV estimates of π at the epicenter of the lattice when T = 25, N = 100, and ( = 0.04.  Because of edge effects the distribution might be different closer to the edge of the lattice, because there is more spatial interaction at the epicenter than near the edge. It is well known that when the DGP contains a unit root, the distribution is skewed to the left of one, as in Figure 1. This skewness transmits itself to the histogram for the estimates of (, as may be seen in Figure 2. In fact, at the epicenter the mean estimate of π is 0.74 and the mean estimate of (  is 0.11. 

Figure 1: Histogram for π at Epicenter
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Figure 2 Histogram of ( at Epicenter
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For each Monte Carlo simulation we calculate π-bar, which is the mean of the N estimates of πi. The distribution of 10,000 estimates of π-bar is presented in Figure 3. Not surprisingly, in contrast to Figure 1, which refers to a single spatial unit, Figure 3 appears to be normally distributed because of the central limit theorem, i.e. it refers to cross-section averages. Also, the mean (0.74) is less than 1. The 5th percentile of rho-bar in Figure 3 is 0.704 when T = 25, N = 100 and ( = 0.04. Therefore, if an estimate of π-bar from spatial panel data is less than 0.704 we may reject the hypothesis that the data contain a temporal unit root at p = 0.05 when ( = 0.04. 

Figure 3 Histogram for π-bar
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Next, we obtain the distribution of  π + ( under the null of π + ( = 1. Critical values for π + ( are reported in Table 1 for alternative values of ( using 10,000 trials, and when the instrumental variables used to estimate ( include 1st and 2nd order spatial lags.  For example, if N = 100 and T = 25 when (= 0.1 the critical value for ( + ( is 0.8309 for p = 0.05. If the panel mean estimate of π + ( is greater than 0.8309 the null hypothesis that π + ( = 1 cannot be rejected. If, for example, the panel mean estimate of π + ( = 0.8 we would reject the unit root hypothesis and conclude that the data are stationary at the 95% probability level. However, if we want to be 99% sure that there is no unit root, we would reach the opposite conclusion because the critical value of π + ( is 0.7857, which is less than 0.8. Table 1 shows that the critical value of π + ( increases slightly with (; it is harder to reject the unit root hypothesis the greater is the SAR coefficient. Also, the critical values are slightly sensitive to the instrumental variables. For example, when (= 0.1, N = 100 and T = 25 the critical value at p = 0.05 is 0.8406 instead of 0.8309 when three IVs are used instead of two.  


As expected, the critical values increase towards 1 when either T or N is larger. However, the critical values are more sensitive to T than to N. For example, if N = 100 and T is 50 instead of 25 the critical value at p = 0.05 increases from 0.8309 to 0.9283, i.e. we can be more confident of rejecting the unit root hypothesis. If the panel mean estimate of π + ( is 0.87 we cannot reject the unit root when T = 25 but we can when T = 50. 


Note that when the panel is short (T = 10) and N is small, SpIPS has almost no power. For example, when N = 25 and T = 10 the critical value of π + ( is 0.1264 at p = 0.05. It is almost impossible to reject the unit root hypothesis. Indeed, at p = 0.01 the critical value is negative.   

Table 1: Critical Values for SpIPS 
	                                  (  
	                  0.1
	0.2
	0.4

	                    p
	1%
	5%
	10%
	5%
	5%

	N=25
	T=10
	-0.440
	0.1264
	0.3189
	
	

	
	T=25
	0.6612
	0.7616
	0.8042
	
	

	
	T=50
	0.8655
	0.8977
	0.9137
	
	

	N=100
	T=10
	0.0733
	0.3876
	0.4938
	
	

	
	T=25
	0.7858
	0.8309
	0.8495
	0.8521
	0.8835

	
	T=50
	0.9138
	0.9283
	0.9359
	
	

	N=225
	T=10
	0.3016
	0.5085
	0.5773
	
	

	
	T=25
	0.8275
	0.8577
	0.8704
	
	

	
	T=50
	0.9026
	0.9349
	0.9415
	
	


Notes: Square 10x10 lattice with rook contiguity
Finally, we modify equation (6a) by specifying a lagged spatial lag, i.e. 
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. When ( = 0.1, N = 100 and T = 25 the critical value (p = 0.05) is 0.8494 instead of 0.8309, i.e. it becomes slightly easier to reject the unit root hypothesis. This is related to the fact that 
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is weakly exogenous for (, whereas 
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is not, because it depends directly on (t. 
Bespoke SpIPS 
The critical values in Table 1 refer to a square rook – lattice. As we saw in chapter 5, critical values in spatial cross-section data depend on the parameters of the lattice, which affect spatial connectivity. Therefore, the critical values in Table 2 are indicative at best; shape and topology matter. Such matters do not arise in the case of IPS and CIPS where space plays no role. In principle, critical values for SpIPS should be tailored to the role of space in the data to which they are applied. This issue is related to the MAUP problem discussed in chapter 3. There are two related aspects to MAUP. First, the way in which spatial units are constructed in terms of their geographical boundaries might matter for inference. In principle, this issue has its counterpart in time series data, where time periods may be aggregated in different ways, e.g. by months, quarters etc. Second, the way in which spatial connectivity (W) is specified might matter for inference as discussed in chapter 4. The latter implies that unlike IPS and CIPS, SpIPS cannot have universal application because it varies with W. 

Table 3 Comparing SpIPS with IPS and CIPS

	
	IPS
	CIPS
	SpIPS
	

	                 d
	0
	1
	0
	1
	0
	1
	

	House prices
	1.622
	-2.229
	-1.125
	-4.290
	0.939
	  0.6170
	

	Housing starts
	0.209
	-2.936
	-2.936
	-5.625
	1.051
	0.6907
	

	Housing stock
	-0.878
	-0.778
	-1.89
	-2.768
	0.953
	0.6080
	

	Population
	1.299
	-1.439
	-1.756
	-4.734
	0.938
	-0.0042
	

	Wages
	-4.428
	-10.641
	-2.371
	-3.641
	0.892
	0.0863
	

	Capital
	0.142
	4.667
	-2.582
	-4.105
	0.983
	0.7896
	

	Critical value p 
=0.05 
	-1.64
	-2.25
	0.69
	


Notes: Logarithms. N = 9 T = 28 (1987 – 2014). Lag order = 1.
In Table 3 we compare SpIPS test statistics with their IPS and CIPS counterparts for several key spatial panel variables in Israel during 1987 – 2014. According to SpIPS all the variables are nonstationary since average estimates of π + ( exceeds their critical value of 0.69 when d = 0. Note that this critical value differs from its counterpart in Table 1 because it has been calculated for N = 9, T = 28 and W in which the elements are 
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where P denotes population averages and d denotes distance. Unfortunately, Table 1 does not include the case in which T = 28 and N = 9 for comparison. 

 According to IPS all the variables are nonstationary with the exception of wages. According to CIPS half the variables are stationary. The difference between IPS and CIPS may be attributed to strong cross-section dependence, which is controlled for in the latter. For example, housing starts, which are visibly nonstationary in Figure 6.3, are stationary according to CIPS. Alternatively, conditional on a common factor, which accounts for strong cross-section dependence, CIPS rejects the null of a unit root in the case of housing starts. According to SpIPS and CIPS all variables are difference stationary. By contrast, according to IPS capital, population and housing stocks are not difference stationary.       

The Distribution of π = 1 given ( 
In this sub-section we obtain the distribution of π given ( under the null of π =1. This exercise parallels the one in Baltagi et el (2007) except, we assume the DGP is equation (6a) whereas they assume the DGP is equation (1) with spatial autocorrelation in (. For example, if  ( = 0.2, N = 100 and T = 25 the critical value of π is 0.704. Suppose that the estimate of π from equation (3) is 0.6. We may reject the hypothesis that π = 1. This does not necessarily mean that y is stationary because the eigenvalues depend on π and (. 

Table 3: Critical Values of π-bar given ( 
	
	                              ( = 0
	                        ( = 0.04   
	                        ( = 0.2       

	p
	1%
	5%
	10%
	1%
	5%
	10%
	1%
	5%
	10%

	N=25
	T=10
	0.32784
	0.37372
	0.39774
	0.080784
	0.25047
	0.30946
	0.038446
	0.20142
	0.25643

	
	T=25
	0.62973
	0.66106
	0.67869
	0.62378
	0.6583
	0.67584
	0.61848
	0.65185
	0.6696

	
	T=50
	0.80901
	0.82487
	0.8328
	0.80444
	0.82129
	0.82995
	0.89654
	0.9219
	0.93263

	N=100
	T=10
	0.4032
	0.42749
	0.440415
	0.282691
	0.35152
	0.380629
	0.238864
	0.301863
	0.329147

	
	T=25
	0.67981
	0.69633
	0.70417
	0.67849
	0.69338
	0.70134
	0.688289
	0.704241
	0.712053

	
	T=50
	0.83531
	0.84227
	0.84625
	0.83116
	0.83931
	0.84327
	0.950061
	0.958088
	0.961954

	N=225
	T=10
	0.430558
	0.447017
	0.455387
	0.334974
	0.386037
	0.405381
	0.293023
	0.335325
	0.354018

	
	T=25
	0.723823
	0.731716
	0.735764
	0.707116
	0.717957
	0.722995
	0.706853
	0.717675
	0.723132

	
	T=50
	0.850728
	0.855552
	0.858108
	0.844629
	0.849745
	0.852316
	0.962538
	0.967279
	0.969512


See notes to Table 1. Null hypothesis: π = 1 given (.

Table 3 reports critical values for π-bar for different values of N, T and (. We include the case for ( = 0 since this is equivalent to the IPS statistic, which serves as a benchmark. As expected, the critical value increases with T and N since more data makes it easier to reject the null hypothesis that π = 1. Notice that the critical value is more sensitive to T than it is to N. A less obvious result is the effect of ( on the critical values. If ( is small, π-bar is smaller than its IPS benchmark. For example, when T = 25, N = 100 and ( = 0.04 π-bar is 0.693, whereas when ( = 0 it is 0.696. However, when ( is larger the opposite tends to happen. Indeed, π-bar increases towards 1, which makes it easier to reject the hypothesis of a unit root. The insight for this phenomenon is discussed in chapter 5; spatial unit root tests have more statistical power than their temporal counterparts.  These results suggest that if spatial dependence is sufficiently large, it is easier to reject the null hypothesis of π = 1. The intuitive reason is that although spatial dependence increases noise because shocks spillover between spatial units, it increases the variance disproportionately. In short, spatial spillover makes it easier to reject the null hypothesis because it tends to accentuate shocks, thereby facilitating the revelation of incipient nonstationarity.
When N = 100 and T = 25 the critical value of rho-bar at p = 0.05 is 0.696. The critical value increases slightly to 0.704 when ( is 0.2. In this case, SAR in the DGP makes almost no difference. Matters are quite different, however, when T = 10; the critical value falls from 0.427 to 0.302. The same applies when T = 50, but the direction is reversed; the critical value increases from 0.842 to 0.958. This pattern also applies for different values of N. Therefore, the effect of SAR on the IPS statistic depends on T rather than N. If the panel is short (T < 25), IPS is over-sized because its critical value is too large. The opposite happens when the panel is long (T > 25); IPS is under-sized. In the intermediate case IPS is correctly sized.

These critical values assume that (it in equation (6a) is iid. Nuisance parameters are induced by serial correlation and spatial autocorrelation. The former may be handled by augmenting equation (6a) with terms in lagged (y as in IPS. The latter may be handled by estimating SAC in (.    
Spatial Panel Cointegration

In chapter 2 we recalled panel cointegration tests designed to test for spurious and nonsense regression phenomena. These tests, developed in the 1980s were subsequently, extended to panel data (Kao 1999, Pedroni 1999 and 2004, Groen and Kleibergen 2003, Westerlund 2007). However, the units in the panel are assumed to be independent. Panel cointegration tests have been developed for panels with strong cross-section dependence (Banerjee and Carrion-I-Silvestre 2011, 2014) but they have not been developed for spatial panels with weak cross-section dependence. There are two main aspects to such spatial dependence. Suppose we wish to test the null hypothesis that β = ( = 0:
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where y and x are nonstationary, ( is a spatial lag coefficient and ( is the SAC coefficient. Notice that y and
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share the same time series properties. So if y is difference stationary, so must 
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 be difference stationary. Note also that in general y is not cointegrated with 
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except in the unlikely event that the spatial difference y - 
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happens to be stationary. In standard panel cointegration tests the stationarity of u is tested under the assumption that in the DGPs for y and x (equation 6a),  ( = 0 and π = 1, i.e. y and x are difference stationary and spatially independent. Also ( is assumed to be zero. The variables in equation (7a) are cointegrated if its residuals (u) are stationary, i.e. when ( + ( < 1.

Spatial dependence in equations (6a) and (7a) raises three questions. First, how are standard cointegration tests affected by assuming ( is zero in the data generating processes for y and x in equation (6a)? Second, how are these tests affected by assuming that ( is zero in equation (7a)? Third, how are these tests affected by assuming that ( is zero in equation (7b)? Moreover, in spatial contexts the taxonomy of cointegration is richer than in non-spatial contexts. Suppose u is I(1) when ( = 0 and u is I(0) otherwise. This means that y and x are not cointegrated unless spatial lags are specified. What are the critical values for panel cointegration in this spatial context? Also, how are these critical values affected by (? 
There are five main cases:
1. If u ~ I(0), but u ~ I(1) when ( = 0, y and x are "spatially cointegrated" but not "locally cointegrated", i.e. y and x are not cointegrated (local) but y, x and the spatial lag of y are cointegrated.
2. If u ~ I(0) irrespective of (, y and x are "globally cointegrated", i.e. y and x are cointegrated and y, x and the spatial lag of y are cointegrated.
3. If u ~ I(0) and and u ~ I(1) otherwise, y and x are "locally cointegrated" but not "spatially cointegrated".

4. If u ~ I(0) when β = 0 but u ~ I(1) otherwise, y is cointegrated with its spatial lag. This is a pathological possibility.

5. If u ~ I(1) irrespective of (,  y and x are not cointegrated.

As mentioned in chapter 2, Pedroni proposed two test statistics for heterogeneous panel cointegration. The group augmented Dickey – Fuller statistic (GADF) equals the average of the N ADF statistics for the individual panel units, i.e. it is the average of the estimates of (1 - (i)/sd((i). The group rho statistic (Grho) is the average of (i. If GADF or Grho are greater than their critical values (GADF* < 0, Grho*) the null hypothesis of ( = 1 cannot be rejected. GADF and Grho are equivalent tests asymptotically. In what follows we obtain the critical values for SpGrho, which is the spatial counterpart of Grho*, and is based on the distribution of ( + ( under the null of ( + ( = 1.  

We use Monte Carlo simulation to generate difference stationary panel data using equation (6a) for y and x under the assumption that (y and (x are independent. We generate 10,000 simulated data sets for y and x for different values for N, T and ( using as before a contiguity rook-based spatial weight matrix W for a square lattice. These values of y and x are used to calculate 
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. We use these simulated data to estimate equation (7a) by ML. Since the DGPs for y and x are independent, the variables in equation (7a) are not cointegrated by construction, and estimates of ( + ( are expected to be 1. If T is sufficiently large, we may obtain the distribution for 
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 under the null hypothesis for each unit in the panel. This is like a DF cointegration test statistic except for the fact that the panel units are spatially dependent. Alternatively, we may obtain a panel cointegration test statistic by obtaining the mean and variance of ( + (. This is equivalent to the group rho cointegration test suggested by Pedroni (1999) except for the fact that the panel units are spatially dependent and the cointegrating vector contains spatial lags of y and x. 
The histogram of 10,000 estimates of ( is presented in Figure 4 for the case where N = 100, T = 10 and ( = 0.2 and ( = 0. As demonstrated by Phillips and Moon (1999) these estimates are a random variable such that E(() ( 0 even as T tends to infinity. Indeed, as noted in chapter 2, in time series data the t-statistics of the estimates of ( tend to infinity at the rate of root-T. Figure 4 shows that estimated ( is sometimes positive and sometimes negative, and although the mean is small it is not exactly equal to zero. This is the spatiotemporal counterpart to the nonsense regression phenomenon discussed in chapter 2.

Next, the 10,000 sets of residuals, are used to estimate (i + (i for each spatial unit, which makes 10,000xN estimates in total.  These estimates are expected to be 1 since the true value of β is zero. Figure 5 plots the histogram of these estimates at the epicenter. They have a “Dickey-Fuller” distribution, which is skewed to the left of 1, as in Figure 1. Next we calculate SpGrho, which is the average of the N estimates of (i + (i. The histogram for the 10,000 estimates of SpGrho is presented in Figure 6. In contrast to Figure 5, which has Dickey-Fuller type distribution, the distribution in Fig 6 appears normally distributed, due to the central limit theorem. This happens because Figure 5 refers to a single spatial unit, whereas Figure 6 refers the average over all spatial units. The 5th percentile of Figure 6 serves as the critical value of SpGrho. If the estimate of rho + delta-bar obtained from spatial panel data in which T = 10, N = 100 and ( = 0.2 is less than this critical value we may reject the null hypothesis at p=0.05, that the estimate of ( is nonsense. 


An alternative to focusing on SpGrho is to obtain the mean (m) and standard deviation (sd) from Figure 6, and to calculate:

[image: image61.wmf])

1

,

0

(

)

(

N

sd

m

SpGrho

N

»

-


which is the “IPS” counterpart to the spatial panel cointegration test described in the previous paragraph.  

Figure 4: Histogram for Panel Nonsense Regression Coefficient
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Figure 5: Histogram of ( + ( at Epicenter
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Figure 6: Histogram for SpGrho
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Table 4: Critical Values for Local Cointegration

	
	                                 ( = 0
	                         ( = 0.04   
	                              ( = 0.2      

	Percent
	1%
	5%
	10%
	1%
	5%
	10%
	1%
	5%
	10%

	N=25
	T=10
	0.3625
	0.4101
	0.4354
	0.3653
	0.4148
	0.4398
	0.4124
	0.4661
	0.4950

	
	T=15
	0.5527
	0.5867
	0.6055
	0.5557
	0.5902
	0.6091
	0.6340
	0.6824
	0.7099

	
	T=20
	0.6516
	0.6817
	0.6964
	0.6568
	0.6863
	0.7010
	0.7655
	0.8142
	0.8415

	N=100
	T=10
	0.4481
	0.4706
	0.4827
	0.4522
	0.4734
	0.4858
	0.5341
	0.5600
	0.5743

	
	T=15
	0.6151
	0.6321
	0.6409
	0.6199
	0.6365
	0.6454
	0.7654
	0.7953
	0.8100

	
	T=20
	0.7025
	0.7168
	0.7236
	0.7078
	0.7230
	0.7299
	0.9260
	0.9521
	0.9680

	N=225
	T=10
	0.4743
	0.4898
	0.4979
	0.4777
	0.4924
	0.5003
	0.5710
	0.5899
	0.6001

	
	T=15
	0.6345
	0.6455
	0.6509
	0.6389
	0.6504
	0.6558
	0.8123
	0.8331
	

	
	T=20
	0.7183
	0.7281
	0.7327
	0.7256
	0.7343
	0.7395
	0.9764
	0.9946
	1


Table 4 reports critical values for local cointegration for various sample sizes and degrees of spatial dependence as measured by (. As in Table 1, these critical values vary directly with T, N and (. However, the level of these critical values is naturally lower than in Table 1 because degrees of freedom have been used in estimating the panel regression. When T = 20 and N = 100 the critical value is 0.717 at p = 0.05 for nonspatial DGPs, i.e. when ( = 0. When the SAR coefficient in the DGP is 0.2 the critical value increases to 0.952. It is therefore easier to reject the null of no-cointegration when the DGPs are spatial than when they are not. The presence of spatial spillovers in the data accentuates what the data reveal. This result is the spatial counterpart to Engle and Yoo (1987) who noticed that the critical value for the ADF cointegration test statistic (which takes account of autocorrelation) may be larger than its DF counterpart (which ignores autocorrelation).     


Table 5 reports critical values for SpGrho when N = 100, T = 25, ( = 0.2 and k denotes the number of variables hypothesized in the cointegrating vector. These critical values are naturally stricter than their unit root counterparts in Table 2 because degrees of freedom have been sacrificed to estimate u. For example, when T = 25, N = 100, p = 0.05 and ( = 0.2, the critical value in Table 1 for a unit root is 0.8521 whereas in Table 5 its counterpart is 0.8188. If, for example, SpIPS = 0.83 we would reject the null hypothesis of π + ( = 1. If SpGrho = 0.83 we could not reject the null hypothesis of ( + ( = 1. As expected, the critical values become stricter (SpGrho* decreases) as the number of variables in the cointegrating vector gets larger. However, the differences are small as they are in Banerjee and Carrion-I-Silvestre (2011, 2014) in the case of strong cross-section dependence.    
Table 5 Critical Values for Local Cointegration: SpGrho
	  T                    
	N
	(
	k
	1%
	5%
	10%

	25
	100
	0.2
	2
	0.8053
	0.8188
	0.8250

	25
	100
	0.2
	3
	0.8028
	0.8156
	0.8219

	25
	100
	0.2
	4
	0.7993
	0.8120
	0.8185

	25
	100
	0.1
	2
	0.7582
	
	

	50
	9
	0.2
	2
	0.7229
	0.7497
	0.7644

	25
	9
	0.2
	2
	0.6479
	0.6969
	0.7181

	50
	9
	0.1
	2
	0.8240
	
	

	50
	9
	0.2
	4
	0.7036
	0.7343
	0.7493


Super-consistency
As mentioned in chapter 2, Stock (1987) was the first to show that OLS estimates of cointegrated vectors are super-consistent; they converge faster in probability than root-T to their population counterparts. Due to super-consistency the parameter estimates of cointegrating vectors are consistent even if the variables in the model happen to be jointly determined. This means that parameter estimates that would not be consistent when the data are stationary, are consistent if the data are nonstationary, provided that the variables concerned are cointegrated. 


These properties carry over to nonstationary panel data when N is fixed. Matters are different if N is not fixed (Baltagi 2008, p 299). Notice that Baltagi’s (​NT tends to zero when N is fixed but T tends to infinity. This means that OLS estimates of, for example, the price elasticity of supply and related parameters are consistent despite the fact that price is jointly determined with demand. Conveniently, the determinants of demand may be ignored asymptotically when testing hypotheses about supply, and the determinants of supply may be ignored when testing hypotheses about demand.

 These properties also carry over to the estimation of SAR coefficients (of spatial lagged dependent variables). In the case of stationary data, OLS estimates of SAR coefficients are inconsistent because the outcomes of neighbors are jointly determined. In this case, consistent estimation of SAR coefficients is by ML or IV as explained in chapter 3. When the data are nonstationary, however, OLS estimates of SAR coefficients are super-consistent, as we show. As is well known, IV and GMM are consistent estimators but biased in finite samples. The same applies to the estimation of spatial lag coefficients in cointegrating vectors, which may be biased in finite samples (Banerjee et al 1993). However, the finite sample bias in the latter is mitigated and in many cases may be negligible, especially if the variance of the cointegrated residuals is small relative to the variance in the data. Therefore, estimating spatial lag parameters in cointegrating vectors by IV or ML has doubtful justification in finite samples.   

Suppose the model to be estimated is:
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where x is exogenous, h is endogenous and is therefore dependent on the residual u. If y, x and h are stationary OLS estimates of β, ( and ( are obviously biased and not consistent. Matters are different when these variables are difference stationary and cointegrated. This happens because the covariance between nonstationary variables, such as h, and stationary variables, such as u, increases more slowly with T than the variances and covariances between the variables in equation (8).   
Let the data generating process (DGP) for a difference stationary variable such as h be a random walk with drift α (subscript i is dropped for convenience) so that h has a stochastic trend:
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where ( ~ iid(0, (2) without loss of generality. The general solution for h is:
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where h0 = 0 is the initial value for h, and 
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 is a random walk since 
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According to equation (8c) h is nonstationary because its first two moments depend on time. Its unconditional mean is αt, and its variance (the variance of 
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) is t(2. 

Suppose ut is a stationary random variable, as it must be if the variables in equation (8a) are cointegrated. The covariance between h and u is obtained by multiplying equation (8b) by ut, summing, and dividing by T:
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This covariance has two components. The asymptotic orders in probability of these component are:
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Equation (8e) follows from equation (2.1f), which concerns the product of t and a stationary random variable. Equation (8f) follows from equation (2.1) which involves the product of a random walk and a stationary random variable. The asymptotic order of a sum is the largest asymptotic order of its components. Therefore, the covariance of h and u is independent of T if α = 0 and it increases with root-T otherwise. 


The variances of nonstationary variables such as h increase linearly with T if α = 0 and with T2 otherwise (because the square of h in equation (8c) depends on t2. For similar reasons covariances between difference stationary variables increase with T2 because their products involve terms in t2.  

These arguments also apply to the spatial lagged dependent variable, because 
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 has the same time series properties as y and h. Therefore, the covariance between 
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and u is Op(T½) and its variance increases with T2. The probability limits of the OLS estimates of the parameters are equal to:
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where:
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The asymptotic order in probability of sums of random variables is equal to the largest asymptotic order of one of its components. Hence, if y = y1 + y2 and y1 is Op(Ta) and y2 is Op(Tc) the asymptotic order of y is c if c > a. The asymptotic order in probability of products of random variables is equal to the sum of the asymptotic orders of its components. Hence, if y = y1y2, y is Op(Ta+c). Finally, the asymptotic order of quotients is equal to the difference between asymptotic orders. Hence, if y = y1/y2 the asymptotic order in probability of y is Op(Ta-c). Applying these rules means that the numerators of b, l and f are Op(T4)xOp(T½) = Op(T4½) and d is Op(T6) because it involves the products of the variances of x, 
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and h, each of which is Op(T2). Therefore, the probability limits of b, l and f are Op(T-3/2). Consequently, OLS estimates of β, ( and ( are T3/2 super-consistent. If α = 0 in equation (8b), i.e. the variables are driftless random walks, the OLS estimates turn out to be T consistent, which is still super-consistent relative to root T consistency for stationary data. 
    As mentioned in chapter 2, Banerjee et al (1993) carried out a Monte Carlo analysis of the finite sample properties of cointegrating vectors in which T ranges between 25 and 200. In general they found that the final sample bias varies inversely with the goodness-of-fit of the cointegrated model, and the noise in the DGPs for h (the variance of ( in equation (8b)), and it varies directly with the degree of error correction ((). With T = 25 the finite sample bias ranges between 2 percent and 30 percent. In the case of spatial panel cointegration we expect these finite sample biases to be smaller because the bias is naturally diversified away across the panel units. The bias for region i is unlikely to be perfectly correlated with the bias for region j.   
Spatial Error Correction

In chapter 2 we explained that cointegration and error correction are two sides of the same coin. Cointegration implies error correction, and error correction implies cointegration. If the variables in equation (7a) are cointegrated, the spatial error correction model (SpECM) associated with equation (7a) in its first order form is:
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where e are residuals that are assumed to be temporally uncorrelated, but they might be spatial correlated such that cov(e​it​e​jt) = (ij is non-zero. The local error correction coefficient (4 is expected to be negative, since u​it-1 is positive when yit-1 is greater than its equilibrium value. Therefore, yit is expected to decrease as it corrects itself towards its equilibrium value. In the short run, x may affect y differently to how it affects y in the long-run, hence (2 might differ from ( in equation (7a). Also, potential short-term inertia in y is captured by (1. If there are spatial spillovers in error correction, the dynamics of y will be affected by 
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 among neighbors. Therefore, (5 is the spatial error correction coefficient, and is expected to be have the same sign as (1. The short-term SAR coefficient (3 might differ from its long-run counterpart ( in equation (7a). As in equation (6a) where (i is a long-run specific spatial effect, (oi in equation (9) is a short-term specific spatial effect. Finally, z is stationary, so it does not affect y in the long-run but it may affect y in the short term via (6.         

Note that when the panel data are difference stationary, all the variables in the SpECM are stationary since u and 
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 are stationary when equation (6a) is cointegrated. Because all the variables in equation (9a) are stationary, their parameter estimates have standard distributions. This means that t-tests etc may be applied in the usual way. Indeed, equation (9a) may be estimated by standard dynamic panel data methods because it does not include contemporaneous spatial lagged dependent variables (
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). If (4 = (5 = 0 equation (9a) becomes a spatial autoregression since it incorporates temporal lags and spatial lags of (y and (x as well as z. When (4 is negative there is local error correction. When (5 is non-zero there is spatial error correction. When both types of error correction occur, we refer to this as "global error correction".  

Spatial cointegration does not necessarily imply spatial error correction. If 
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 is specified in the cointegrating vector (( is statistically significant), the spatial error correction coefficient ((5) does not have to be statistically significant. In the latter case, the effect of 
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is expressed through (4 since uit-1 and
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are dependent.  Spatial error correction in fact implies that second order neighbors are also important since according to equation (7a) the spatial residual error is defined as:
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where, for example, 
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denotes a second order spatial lag (neighbors first-removed). So there is no necessary reason why spatial cointegration should induce spatial error correction. 


Suppose that cointegration is not spatial because ( = 0. Equation (9b) shows that in this case the spatial residual error depends only on 
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and 
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. Therefore, spatial error correction does not necessarily imply spatial cointegration. In this case spatial lags have only a temporary effect on y since (y depends on 
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and 
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. These spatial lags do not have a permanent effect. Note that just because there is no spatial cointegration and error correction (( = (5 = 0), this does not necessarily rule out spatial dynamics. If (3 is statistically significant 
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Identification
When the data are stationary parameter identification and consistency are inextricably interwoven. If covariates are correlated with residuals their OLS parameter estimates are biased and cannot be consistent. To solve this problem instrumental variables are required to identify the parameters involved. These instrumental variables must be correlated with the covariates but independent of the dependent variable. Matters are different if the data are nonstationary; identification and consistency are not necessarily related. Indeed, the previous discussion of super-consistency was conducted without any reference to identification. However, this obviously does not mean that identification is irrelevant if the data are nonstationary and cointegrated, especially in multivariate contexts.

To demonstrate this, assume that ( = 0 in equation (8a) without loss of generality. We continue to assume that x is exogenous and h is endogenous. Previously the research agenda was univariate because it was solely concerned with equation (7a). Now the research agenda is extended to the joint determination of y and h. This bivariate example is the simplest of multivariate cases. The null hypotheses are:


[image: image93.wmf])

10

(

)

10

(

b

v

h

m

y

a

u

h

x

y

it

it

it

it

it

it

it

it

+

+

+

=

+

+

+

=

m

g

d

f

b

a

    

where y, x, h and m are difference stationary, w is exogenous, and u and v are stationary if the variables in equations (10) are cointegrated. Equation (10a) is identical to equation (8a) with ( = 0, and equation (10b) has been normalized with y on the left hand side and h on the right hand side. Recall from chapter 2 that this normalization is arbitrary if the data are nonstationary; it would not matter asymptotically if h or m had been specified on the left hand side. 

By way of motivation let y denote quantity and h denote its price. Equation (10a) is the model for demand, in which case ( is expected to be negative, and equation (10b) is the model for supply, in which case ( is expected to be positive. To identify the demand schedule, m is omitted for equation (10a). To identify the supply schedule x is omitted from equation (10b). But for these omitted variables it would have been impossible to distinguish supply from demand. Therefore, x and m have their usual roles as far as identification is concerned, but not as far as consistency is concerned. Equation (10a) does not require information on m for consistency. Nor does equation (10b) require information on x for consistency. The data for y, h, x and m therefore contain two cointegrating vectors. The first comprises y, h and x but excludes m, and the second comprises y, h and m but excludes x. Recall from chapter 2 that when there are four variables the maximum number of cointegrating vectors is four and the minimum is zero. These cointegrating vectors may be estimated by ML using the methodology of Larsson, Lyhagen and Löthgren (2001) or by OLS. 

If equations (10a) and (10b) are cointegrated, the spatial vector error correction model (SpVECM) is the vector counterpart to equation (9a) for two state variables (y and h) instead of one:
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where e denotes the innovation for y and d the innovation for h. The SpVECM incorporates six types of parameters: autoregressive ((11, (12, (11, (12), spatial autoregressive ((31, (32, (31, (32), temporal error correction ((51, (52, (51, (52), spatial error correction ((61, (62, (61, (62), lagged exogenous ((21, (22, (21, (22), and lagged spatial Durbin ((41, (42, (41, (42). Inevitably, the taxonomy of cases in SpVECMs is much richer than in SpECMs because error correction may occur between state variables as well as within them. For example, if (52 is statistically significant there is error correction for h to y. If (62 is statistically significant there is spatial error correction from h to y.    
So far it has been assumed that x and m are exogenous. However, recall from chapter 2 that for causality they do not have to be strongly exogenous; they only have to be weakly exogenous. In the present context this means that there is no error correction between x and u, or between m and v. For example, in the former case (first order):
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x is weakly exogenous if the error correction coefficient (f) is not significantly different from zero. If in addition b = c = d = 0, x would be strongly exogenous. More generally, if x and m are included in the SpVECM the counterparts for x and m of the error correction coefficients should be zero for weak exogeneity. If x and m are not weakly exogenous, it would be necessary to treat them as state variables alongside y and h. But identification would then require weakly exogenous variables to identify the parameters in equations (10a) and (10b) which would now include equation (10) for x and equation (31d) for m. The usual rank and order conditions apply to these weakly exogenous variables. 

In chapter 8 we provide empirical illustrations of unit root tests for spatial DGPs, and cointegration tests for spatial DGPs, which distinguish between local, spatial and global cointegration. We also illustrate spatial error correction modelling. In chapter 9 we provide empirical illustrations of multivariate state variables and the issues of identification that arise therein, including tests for weak exogeneity of variables such as x and w that are specified for purposes of identification.  

Confidence Intervals

In chapter 2 we noted that in time series models cointegrating vectors generally have nonstandard distributions, unless the variables concerned happen to be weakly exogenous. This means that t - tests for individual parameter estimates, or F – tests for groups of parameter estimates are invalid. Matters are different in the case of non-spatial panel data because as N becomes large, the central limit theorem induces normality in the distribution of OLS parameter estimates. Indeed, this tendency is visible in Figures 3 and 4. In spatial panel data N is fixed. If N is relatively small (as it is in chapter 8) the central limit theorem cannot be relied upon to induce normality in the distributions of  estimated cointegrating vectors. This is not a problem with regard to hypothesis tests regarding the specification of cointegrating vectors. For example, in equation (7a) the hypothesis that ( is zero is not tested with reference to its t statistic. Instead, and as noted in chapter 2, we may reject this hypothesis if the variables in equation (7a) cease to be cointegrated if this restriction is imposed. The same is true if the p-value of the panel cointegration test is impaired. 

Although confidence intervals are not required to test hypotheses about the specification of cointegrating vectors, they may nevertheless be of interest in their own right. We therefore propose a bootstrapping procedure for calculating confidence intervals for cointegrating vectors estimated with nonstationary spatial panel data. We naturally expect that the lower bound of confidence intervals of parameters estimates, such as (,  is positive if ( > 0, and is negative if ( < 0.    
Let the model be:
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where ( and e are iid, and ( < 1 for spatial panel cointegration. We assume for expositional purposes that u is not spatially autocorrelated.  ( and e are resampled with replacement from their respective empirical distribution functions (EDF) and are denoted by (* and e*. Following Freedman and Peters (1984), u* and e* are constructed recursively to preserve their temporal autocorrelation properties: 
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Let 
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denote the resampled values of the spatial lags generated by their DGP:
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* is resampled from its EDF. Finally, y* is constructed to preserve its spatial dependence:
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Note that this procedure differs from Lin et al (2011) who suggest:


[image: image102.wmf](

)

1

*

*

*

ˆ

ˆ

-

-

=

+

+

=

W

I

A

Au

Ax

A

y

t

t

t

l

b

a


Their procedure does not ensure that y, x and 
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are panel cointegrated. For example, if β = 0 y* must be stationary because u* is stationary. 

The BS parameters are estimated from:
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which extends to panel data the BS methodology for cointegration proposed by Li and Maddala (1997). The percentile method is used to obtain the confidence intervals and pvalues from the bootstrap distributions for
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In finite samples consistent estimators might be biased, e.g. 
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. The bias corrected estimate (Maddala and Kim 1998, p 314) is:
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for which confidence intervals and pvalues may be obtained by the percentile method. Since the BS distributions may not be symmetric, the confidence intervals are not necessarily symmetric. 
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