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Abstract 

In this paper we characterize the optimal linear and piecewise linear EITC schedule. In the linear 

framework we show that in the presence of unemployment, an increase of social inequality aversion 

and a decrease in labor aversion both derive in a lower optimal EITC. For the piecewise linear schedule, 

we show that in most cases the optimal schedule is a triangle, which is at odds with actual policy in 

countries that implemented an EITC. A trapezoid is optimal when wage distribution among the working 

poor is even, with a discrete jump for higher wage groups. After mimicking the wage distribution in 

different countries, we show that changes in the share of the "very rich" have a lower impact on the 

optimal EITC than changes in the variance that affect the share of the working poor. Finally, we show 

that the main impact of an increased minimum wage on the optimal EITC schedule is a steeper phasing 

out.  
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1. Introduction 

 

The earned income tax credit has been adopted in the U.S, in 1976 and has become the most prominent social 

program with a participation of 27.5 million individuals who get substantial wage subsidies from the federal 

government. The program has been adopted also in many countries like UK and New Zealand and is gradually 

being extended to new ones like Israel, that implemented the program in 2008. 

So far the theoretical analysis on the optimal EITC schedule is relatively scarce. The most prominent paper was 

written by Saez (2002) who analyzed the optimality of the EITC vis-à-vis a basic transfer to the unemployed, and 

found that that the result depends on extensive and intensive margin elasticities at the labor market. Note, 

however that in Saez's framework elasticities are exogenous which is a drawback since lower wage individuals 

entering the labor market are crucially affected by the government transfer (income effect) – and thus it is 

important to study first the direct implications of this fact on the extensive margin reaction of the working poor. 

In this paper we build a simple model to study the optimal linear EITC at first, and then we move forward to 

analyze the optimal piecewise linear EITC according to Saez's framework.   

The paper is organized as follows. In the first section we study the optimal linear EITC in a situation where 

individuals decide whether to enter the labor market according to their tastes toward consumption and leisure, 

given the demogrant received from the government. Understanding first the optimal linear framework has been 

the way proceeded in optimal taxation as a first step for enhancing the optimality analysis. Once we get the 

insights into this exercise, we move forward to study the optimal piecewise linear EITC. For this purpose we 

perform an analysis with exogenous elasticities along the lines of Saez (2002), where we ask the following 

question: is the optimal EITC a trapezoid, as we see in most implemented systems at different countries? Finally, 

we ask two additional questions: what is the optimal EITC for a given wage distribution and how it is affected by 

the existence of a minimum wage? 
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2. The optimal linear EITC 

In this section we characterize the optimal linear EITC using a simple stylized model. While the relationship 

between different variables at the optimum is analyzed in next section using a less restrictive framework, we 

still get value added in this section by looking at a simple model of a linear EITC in which the results can be 

proved – as a first step for a better understanding of the optimal EITC schedule.  In this model the government 

chooses the optimal EITC based on maximization by individuals. 

Individuals 

Assume that individuals obtain utility (U) from consumption (c) and leisure (l):  

(1)  Ui  = ln(ci) + δi ln(1 − li) 

Where  δ represents the labor aversion, which is usually higher for low income individuals. For simplicity we will 

assume that there are three types of individuals in the economy, differentiated by the wage they can achieve at 

the labor market: 

(2) w0 < w1 < w2 

Individual 0 is the unemployed (as a consequence of his/her low w), individual 1 is the working poor since 

he/she gets a relatively low salary, and individual 2 is the rich who pays the income tax and finance the 

unemployment benefits and the EITC. The budget constraints of these three individuals are: 

(3) c0 = T0 + 𝐴 

c1 = 𝑇0 + (1 + e)𝑤1𝑙1   

c2 = 𝑇0 + (1 − t)w2𝑙2 
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Where T0 represents a demogrant, A is the unemployment benefit, e is the linear EITC and t is the linear 

income tax which we will assume is given.2 While individual 0 has no choice, individuals 1 and 2 will 

maximize equation 1 subject to budget constraints 3. Let us start with the solution of individual 3: 

(4) F. O. C.:   
w2(1−t)

w2(1−t)l2
=

δ2

1−l2
 

And it is easy to show that his labor supply is: 

(5) l2 =
1

1+δ2
 

It is well-known empirically that the labor aversion parameter for high-income individuals is very low. For 

simplicity we shall assume that δ2 = 0 and consequently labor supply of the rich individuals is inelastic: 

l2 = 1. By a similar technique we obtain the labor supply for individual 1: 

(6) l1 =
1

1+δ1
[1 −

δ1T0

w1(1+e)
] 

Note that in order to participate at the labor market individual 1 needs to obtain a wage that is higher than 

his threshold wage (including the EITC) which can be derived using the last term of equation 6: 

(7)  𝑤1(1 + 𝑒) > 𝛿1𝑇0;    

Note that when 𝛿1 is low, the working poor participates at the labor market even if his hourly wage is low 

and e=0.  This means that theoretically the working poor could have an income that is lower than the one 

obtained by the unemployed (who gets A in addition). As discussed by Saez (2002), this would be the case 

of a deserving working poor, who would be favored by a conservative government and clearly would 

receive an EITC. Note, however, that by not participating at the labor market he/she would be able to 

receive a higher transfer from the government (𝑇0 + 𝐴) , and consequently it would be better for him/her 

                                                           
2
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(2011). 
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to remain unemployed. Thus, the benchmark case shall be based on a representative working poor with a 

higher 𝛿1 which implies by equation (7) that he has a higher wage. As discussed by Saez, if an EITC is 

optimal for this individual, it would clearly be optimal also in the case of a lower wage because his/her 

social weight would be even higher. Summarizing, the benchmark (and realistic) assumption for this case 

requires that the income of the working poor without an EITC is similar and slightly higher than the one of 

the unemployed.  

The Government 

Government redistributes income in order to obtain a maximal social welfare. The government Budget 

constraint is: 

(8) T = tw2 = 3T0 + A +  ew1l1 

While a more general optimization would avoid assuming that 𝑙2 is given, we leave this case for the next 

sections. In this section, given that labor supply of high-income individuals is fixed, we assume for simplicity 

that tax revenues T are also given. We work with Atkinson's Social Welfare Function. Note that since t and 

labor supply of the third individual are given, he/she will not take part at the government maximization. 

While this assumption is clearly arbitrary, it allows concentrating the government dilemma on re-

distribution among the poor – to the unemployed and the working poor.  We assume that the government 

chooses e optimally for a given A. The maximization problem is: 

(9)  MAXe   W =  ∑
Ui

1−v

1−v
1
i=0   

In equation 9, v represents the inequality aversion parameter. For simplicity, we will assume that since the 

government does not see the realization of labor, U will be based only on consumption. 
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By substituting equation 8 in the individuals' solution and taking the F.O.C. that results from the 

maximization problem stated in 9, we can calculate the optimal e.  

F.O.C.: 

{ln [w1 (
1

1 + 𝛿1
(1 −

𝛿1𝑇0

𝑤1(1 + 𝑒)
)) (1 + e) +

T − A − e𝑤1𝑙1

3
]}

−v
𝑤1 (1 + 𝛿1) − 𝑤1𝑙1 3⁄⁄

[w1𝑙1(1 + e) +
T − A − e𝑤1𝑙1

3 ]
= 

{ln [
T − A − e𝑤1𝑙1

3
+ 𝐴]}

−v 3

𝑇 − 𝐴 − 𝑒𝑤1𝑙1 + 3𝐴

𝑤1𝑙1

3
 

Note that the first term in the LHS represents social marginal utility of the working poor, multiplied by 

the marginal effect of the EITC divided by his income. In the terminology used by Saez (2002), the 

nominator includes both a behavioral effect (enhancement of labor supply) and a mechanical effect 

(loss of demogrant). The difference compared to Saez's framework is that in our case we get 

straightforward the final result - which does not depend on elasticities. In the RHS we only see, beyond 

the social marginal utility of the unemployed divided by his income, the mechanical effect - that is 

related to the reduction of the demogrant.  We can re-write this condition in the following way: 

(10)   

{ln [w1𝑙1(1 + e) +
T − A − e𝑤1𝑙1

3
]}

v

= {ln [
𝑇 − 𝑒𝑤1𝑙1 − 𝐴

3
+ 𝐴]}

v 𝑇 − 𝐴 − 𝑒𝑤1𝑙1 + 3𝐴

(w1𝑙1(1 + e) +
T − A − e𝑤1𝑙1

3 )
[

𝑤1

(1 + 𝛿1)𝑙1
−

1

3
] 

The advantage of this analysis is that we get a tractable F.O.C. that allows checking whether the EITC is 

optimal; in particular, the existence of an optimal EITC does not depend on the exogenous value of the 

extensive-margin elasticity.  Since the incomes of the working poor and the unemployed are close to 

each other, the LHS is close to the first term of the RHS, and the second term is relatively close to 1. 

Thus, the optimality of the EITC depends on the third term – which must be higher than 1. The intuition 
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of the third term is the following: an extra dollar allocated to the EITC increases income by the positive 

term, while at the same time the working poor loses a third of a dollar through the demogrant. Thus, 

when the behavioral reaction is strong enough, an EITC is optimal. Note that the first component of this 

term is positive and higher than 1 (since the nominator is higher than 1 and the denominator is lower 

than 1). Note also that for plausible parameters, this term is higher than 1 and consequently the 

RHS>LHS for e=0.3 The single way to restore the equality is by imposing an EITC (e>0).  

We use equations 6, 8 and 10 to obtain four important results that will be afterwards characterized 

using simulations: 

Result 1: If an EITC is optimal, increasing inequality aversion results in a lower EITC. 

To obtain this result note that if the EITC is optimal the left hand side (LHS) of equation 9 equals the 

right hand side (RHS). When v goes up the LHS becomes lower than the RHS. The way to restore the 

equality is by reducing e. 

Result 2:   If an EITC is optimal, a reduction in labor aversion results in a lower optimal EITC.  

As explained by Regev and Strawczynski (2015), a reduction in labor aversion may result as a 

consequence of a successful "From welfare to work" government policy, which makes this question 

particularly interesting. While in that paper the result was inconclusive (EITC can be higher or lower 

depending on different scenarios), note that in the present context the result is defined and it implies a 

reduction of the EITC. This result is implied by the fact that the working poor works more, which implies 

an increase in his income. Thus, it is clear that after this change LHS<RHS. Restoring the equality 

requires a lower e. 

Result 3: If an EITC is optimal, increasing the resources available to the government results on a higher 

EITC. 

                                                           
3
  The denominator equals [1 −

δ1T0

w1(1+e)
] which is lower than 1. For the parameters shown in the simulation this term 

equals 1.47. If in addition 𝑤1 is higher than 1 as assumed in the simulation, the last term of the RHS in 10 is significantly 
higher than 1.  
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Also here an optimal EITC implies that the departure is when LHS equals the RHS. For the same labor 

aversion parameters, when we allocate all the money to the demogrant, the RHS>LHS. This means that 

we shall reallocate some money to the EITC, in order to restore the equality.    

Result 4: If an EITC is optimal, increasing the unemployment benefits results on a higher EITC. 

Note that an increase of unemployment benefits causes that the LHS<RHS. In order to restore the 

equality the EITC must go up. 

In order to characterize these results we perform a simulation and calculate the optimal linear EITC. 

Results are shown in Table 1. 

Table 1 

Scenario 𝒍𝟏 𝑻𝟎 e (%) 

Benchmark:  

𝑤1 = 2.2; 𝑇 = 3; 𝛿1 = 0.4; 𝐴 = 1.6; 𝑣 = 2 

0.68 0.354 0.337 

Higher inequality aversion: 

𝑤1 = 2.2; 𝑇 = 3; 𝛿1 = 0.4; 𝐴 = 1.6; 𝒗 = 𝟑 

0.68 0.361 0.250 

Lower labor aversion: 

𝑤1 = 2.2; 𝑇 = 3; 𝜹𝟏 = 𝟎. 𝟐; 𝐴 = 1.6; 𝑣 = 2 

0.74 0.384 0.247 

Higher Government Budget Resources: 

𝑤1 = 2.2; 𝑻 = 𝟑. 𝟐; 𝛿1 = 0.4; 𝐴 = 1.6; 𝑣 = 2 

0.68 0.407 0.378 

Higher Unemployment Benefits: 

𝑤1 = 2.2; 𝑇 = 3; 𝛿1 = 0.4; 𝑨 = 𝟏. 𝟖; 𝑣 = 2 

0.69 0.253 0.440 
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The results of the simulation show that the optimal linear EITC is 33.7 percent, while the optimal transfer to 

the unemployed is 0.354 which represents 16 percent of the income of the working poor. The results of the 

sensitivity analysis are in line with the results shown above: higher inequality aversion and lower labor 

aversion derive in a lower optimal linear EITC and a higher demogrant, while higher resources and higher 

unemployment benefits imply both a higher EITC (the former imply a higher demogrant while the latter a 

lower one). 

 

3. The optimal piecewise linear EITC 

Previous papers that characterized the optimal EITC are Liebman (2002) and Lehman et al. (2011) . Liebman 

(2002) found that social inequality aversion is a crucial parameter for justifying the implementation of an 

EITC. Lehman et al. found that the inexistence of unemployment increases the optimality of an EITC, which 

would be optimal also with a Rawlsian social planer. Note that these papers did not analyze the optimality 

of particular types of schedule, as used in reality. In particular, in this paper we ask whether the optimal 

schedule is a triangle or a trapezoid as implemented in real life by most countries (among them U.S.A., U.K. 

and Israel). 

3.1 Simulations Methodology: 

We further develop Saez’s general equilibrium formula, by allowing at the optimum that the size of the bottom 

4 wage groups depends on the tax rate. For this purpose we assume that the extensive margin elasticities in the 

bottom 4 wage groups are larger than zero, which is a necessary (but insufficient) condition for obtaining a 

wage subsidy in the bottom 3 wage groups. This framework allows for an optimal EITC trapezoid, as explained 

later. 

Recall Saez’s (2002) general equilibrium formula: 
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Ti − Ti−1

Ci − Ci−1
=

1

ζihi
∙ ∑ hj

I

j=i

[1 − gi − ηj

Ti − T0

Ci − C0
] 

When ηi > 0 ∀ i < 5, and ηi = 0 ∀ i > 4, we receive the following set of equations: 

T1 − T0

C1 − C0
=

1

h1ζ1
∙ [(g0 − 1)h0 − h1η1 ∙

T1 − T0

C1 − C0
− h2η2 ∙

T2 − T0

C2 − C0
− h3η3 ∙

T3 − T0

C3 − C0
− h4η4 ∙

T4 − T0

C4 − C0
] 

T2 − T1

C2 − C1
=

1

h2ζ2
∙ [(g0 − 1)h0 + (g1 − 1)h1 − h2η2 ∙

T2 − T0

C2 − C0
− h3η3 ∙

T3 − T0

C3 − C0
− h4η4 ∙

T4 − T0

C4 − C0
] 

T3 − T2

C3 − C2
=

1

h3ζ3
∙ [(g0 − 1)h0 + (g1 − 1)h1 + (g2 − 1)h2 − h3η3 ∙

T3 − T0

C3 − C0
− h4η4 ∙

T4 − T0

C4 − C0
] 

T4 − T3

C4 − C3

=
1

h4ζ4

∙ [(g0 − 1)h0 + (g1 − 1)h1 + (g2 − 1)h2 + (g3 − 1)h3 − h3η3 ∙
T3 − T0

C3 − C0

− h4η4 ∙
T4 − T0

C4 − C0

] 

To solve this set of equations we move from cumulative tax to average tax and rewrite the above equations as 

follows: 

t1 = 1 −
h1(ζ1 + η1)

(g0 − 1)h0 − h2η2 ∙
t2

1 − t2
− h3η3 ∙

t3

1 − t3
− h4η4 ∙

t4

1 − t4
+ h1(ζ1 + η1)

 

t1 =
w2t2

w1

−
(w2 − w1)

w1

[1 −
h2ζ2

(g0 − 1)h0 + (g1 − 1)h1 − h2η2 ∙
t2

1 − t2
− h3η3 ∙

t3

1 − t3
− h4η4 ∙

t4

1 − t4
+ h2ζ2

] 

t2 =
w3t3

w2

−
(w3 − w2)

w2

[1 −
h3ζ3

(g0 − 1)h0 + (g1 − 1)h1 + (g2 − 1)h2 − h3η3 ∙
t3

1 − t3
− h4η4 ∙

t4

1 − t4
+ h3ζ3

] 

t3 =
w4

w3

t4 −
(w4 − w3)

w3

[1 −
h4ζ4

(g0 − 1)h0 + (g1 − 1)h1 + (g2 − 1)h2 + (g3 − 1)h3 − h4η4 ∙
t4

1 − t4
+ h4ζ4

] 

We then proceed to solve this set of equations by scanning through all possible values of t4 (between 0 and 1), 

until a solution that satisfies all first order conditions is obtained. Note that, while this set of equations has 

multiple solutions there is always only one solution that satisfies the following conditions: 1) the marginal tax 

rate for each wage group must be smaller than 1; 2) the marginal tax rate must be increasing with wages. 

Solving the system with endogenous social weights 𝑔𝑖 and group size ℎ𝑖 using iteration 
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The solution for the set of equations above initially takes the social weights gi and group size hi as exogenous. 

However, as Saez (2002) explains: “it is important to note that the social weights gi are not exogenous 

parameters but depend on the tax schedule (c0, … , cI) that is currently implemented, For example, if after-tax 

incomes are equalized across occupations, then there is no reason to desire further redistribution at the margin, 

and the marginal weights should no longer be decreasing with i“. To simplify the computations in his numeric 

simulations Saez (2002) takes the function g(∙) as exogenous, but also states that: “the individual weights of the 

classical approach can always be chosen such that the resulting gi′s match the desired marginal social welfare 

function g(∙)”. That is to say, that a tax schedule can be found such that the post-redistribution consumption 

levels yield social weights that perfectly correspond to the implemented tax schedule. Similarly, each group’s 

size hi is also endogenous and depends on the tax schedule that is implemented. Thus, a tax schedule can be 

found such that the post-redistribution consumption levels yield a set of gi′s and group size hi′s, that (together) 

perfectly correspond to the implemented tax schedule. 

In our simulations we succeed in computing an optimal tax schedule which takes into account the endogeneity 

of the social weights gi and group sizes hi, by applying the following iterative sequence:  

1. The tax schedule is initially computed using the (exogenous) social weights and group sizes that 

correspond to pre-tax consumption levels. I.e. – the social weights and group sizes that persisted prior 

to redistribution via taxes and transfers. 

2. Using the tax schedule that was computed in (1), new social weights and group sizes are computed. 

3. Those newly computed values of gi and hi are then (taken again as exogenous) and used to compute a 

new tax schedule. 

4. The new tax schedule is then used to compute new values of gi and hi, and so forth. 

5. This iterative sequence is repeated until the tax schedule in iteration n perfectly matches the tax 

schedule in iteration n-1, and convergence is obtained. The resulting values of gi and hi that are 
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obtained upon convergence are the correct social weights and group sizes of the after-tax steady state 

equilibrium. 

 

It is important to note that once this iterative approach is adopted, the resulting EITC levels that are obtained in 

equilibrium are substantially smaller than those reported by Saez (2002). The intuition for this result is simple – 

as redistribution occurs, consumption levels (and the resulting social weights) become more equal, which makes 

redistribution less appealing for the central planner.  

3.2 The optimal piecewise EITC schedule 

We proceed with simulations for the case where the extensive margin elasticities in the bottom 4 wage groups 

are larger than zero. We initially use, for all relevant parameters (i.e. the extensive and intensive margin 

elasticities, and the government’s redistributive tastes) the same range of values used in Saez (2002). In that 

respect, a key result of the Saez's (2002) model is that an EITC subsidy is optimal when the extensive margin 

elasticity is high. Thus, since our interest is in the optimal shape of the EITC schedule, we shall focus in our 

simulations mainly on the cases where the extensive margin elasticity is relatively high (i.e.  η = 1, η = 0.5 ). 

Furthermore, as EITC subsidies are obtained in the presence of relatively low intensive margin elasticities, which 

correspond to the ones that are accepted as realistic, we shall focus in our simulations mainly on those cases 

(e.g.  ζ = 0.25, ζ = 0.05).4 Thus, under these conditions, which favor an EITC Subsidy, we shall examine how 

the shape of the optimal  EITC  varies with different values of parameters of interest, such as the central 

planner’s redistributive tastes (v), the intensive margin elasticity and the distribution of wages among the 

working poor.  

An important aspect that must be taken into account is that the initial share of unemployed individuals and the 

distribution of wages of the working poor can vary substantially between countries, and the optimal tax 

                                                           
4
 Gruber and Saez (2002) show that real life intensive margin elasticities for low wage groups are particularly low. 
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schedule for country A (all else being equal) is not necessarily suitable for country B. Thus, for the generality of 

the analysis we run the same simulations over a range of wage distributions, with different levels of income 

inequality among the working poor, and different levels of (pre-tax) unemployment. We will re-visit this 

characteristic in the next section by estimating the wage distribution using empirical data. 

If our target population is, say, the bottom 60%5 of the working age population (the unemployed and the 

working poor), we can divide the working poor into 5 groups with a predetermined pre-tax size. For example, if 

prior to redistribution, the unemployed accounts for 10% of the population then, prior to redistribution the 

bottom four wage groups each account for 12.5% of the working age population. Or, if prior to redistribution 

the unemployed accounts for 20% of the working age population, then the bottom 4 wage groups would each 

(initially) account for 10% of the working age population6. Specifically, we explore in the benchmark case the 

cases where the initial share of the unemployed, is either 5%, 10%, or 20%7.  

3.2.1 Benchmark case 

We start from a benchmark wage distribution - the actual distribution of non-student working age (25-64) 

population in Israel in 2014.  The non-employed account for about 22% of this population - and by construction 

the lowest wage group accounts for 8% of this population, and groups 2-4 account for 10% each. The wage 

distribution ratio in the four bottom wage groups with respect to the bottom wage group is 1, 2.18, 2.90, and 

3.55, respectively. Figure 1 shows for different levels of inequality aversion (v), the cumulative subsidy/tax that 

is obtained in each wage group, as a share of the bottom group’s pre-subsidy wages; the simulations are 

performed using an extensive margin elasticity of η = 1, and an intensive margin elasticity of ζ = 0.25. For the 

                                                           
5
 In Israel for example, about 60% of the non-student working age population, are either not employed or earn less than 

8000 NIS – which is currently the income level in which EITC eligibility is canceled out. 
6 It is important to recall that these initial group sizes will later change, as a reaction to the adopted tax schedule.  

7
 Simulations for cases where the initial share of the unemployed is larger than 20% are less instructive, because the social 

weight of the unemployed is quite high and thus the EITC becomes a less appealing tool for the central planner.   



14 
 

simplicity of the benchmark analysis, we initially assume that each of the 4 lowest wage groups has the same 

extensive margin elasticity η1−4 = 1, and the same intensive margin elasticity ζ1−4 = 0.25.8 

As shown in figure 1, in all levels of inequality aversion, wage groups 2-4 do not receive a wage subsidy but 

rather pay a tax. I.e., under the conditions specified above, the subsidy turns into a tax (in absolute terms) from 

the second wage group on. The phasing out of the second group is steep – which means that the optimal 

schedule looks like a triangle and not as a trapezoid.  Note however, that since the actual wage distribution is 

continuous (rather than discrete) there would always be a wage range in which the (gradual) phasing-out of the 

subsidy occurs. Nonetheless, an important insight that can be drawn from this discrete analysis is that when the 

wage level of the second lowest group is substantially higher than that of the bottom wage group – then a wage 

subsidy for the second wage group (and on) is usually not an optimal policy. In the Israeli case, the wage ratio 

between wage groups 1 and 2, is 2.18, and thus the 2nd group’s wages are not subsidized.  

Figure 1 
 

 

                                                           
8
 We shall later explore more complex cases where the intensive margin elasticity differs between wage groups. 
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3.2.2 Sensitivity to the extensive margin  

In our benchmark case, very low EITC subsidies were obtained for the lowest wage group, and from the 2nd 

group on, there was no entitlement to a subsidy and a tax was payed. This result was obtained under the 

benchmark assumption of an exogenous extensive margin elasticity η = 1. Recalling Saez's (2002) analysis, we 

know that an EITC subsidy is more likely to be obtained when the extensive margin elasticity is high (e.g.  η =

1). Thus, it is not surprising to see (figure 2) that given a lower extensive margin elasticity  η = 0.5, there is 

practically no EITC subsidy for neither wage group – even when inequality aversion (v) is very low.  

Figure 2 
 

 

This case (η = 0.5) is less interesting in the context of characterizing the shape of the optimal EITC trapezoid, 

and we shall therefore proceed with η = 1 in all other simulations. This assumption seems plausible also from 

an empirical point of view.9 

 

                                                           
9
 Brender and Strawczynski (2006) show that in Israel extensive margin elasticities are higher for particular groups like Arab 

women. 
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3.2.3 The intensive margin  

Despite the results shown above, there are specific conditions under which the second wage group is not taxed, 

despite the presence of high wage gaps between groups 1 and 2. Figure 3 shows the optimal cumulative 

subsidy/tax in each wage group, when all conditions are similar to those described in figure 1, except for the 

intensive margin elasticity, which is significantly lower: ζ1−4 = 0.05. As evident in figure 2, when both the 

intensive margin elasticity and the level of inequality aversion (v) are very low, than the second lowest wage 

group is not taxed, despite the large wage gaps relative to the bottom wage group. 

Figure 3 
 

 

In general the optimal tax schedule is flatter when inequality aversion is low. This is not surprising, given that 

under lower inequality aversion less redistribution is required and tax rates are therefore relatively low. 

However, as evident in figures 1 and 2, the EITC subsidy for the bottom wage group is highest when the level of 
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aversion is very high, the social weights of the non-employed are high relative to the working poor and thus a 

large lump-sum transfer is preferred over an EITC subsidy. 

3.2.4 The effect of non-employment rates on the shape of the optimal EITC trapezoid 

Another important aspect that affects its shape is the share of non-employed individuals in the population. As 

intuitively implied from Saez's (2002) analysis, the lower is non-employment the higher the attractiveness of the 

EITC for the central planner.  In figure 4 we employ conditions that favor more an EITC trapezoid: Non 

employment is reduced to 10%, and the wage distribution ratio in the four bottom wage groups with respect to 

the bottom wage group is 1, 1.21, 1.4, and 4 – yielding (within those 4 groups) a Gini coefficient of 0.302. As 

evident in figure 4, this setup – a relatively even wage distribution for the bottom 3 groups, with a discrete jump 

in the wages of the fourth group – yields a flat and wide EITC trapezoid (which differs from the triangle shaped 

EITC schedules that obtained in the previous examples). 

Figure 4 
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Figure 5 shows the optimal EITC schedules for similar conditions of those discussed in figure 4, with the 

exception of initial share of non-employed individuals, which was changed from 10% to 5%. Accordingly, the 

extra 5% of working individuals were equally distributed in the bottom 4 wage groups.  

Compared to figure 4, the EITC triangles/ trapezoids in figure 5 are taller and cover a wider income range; i.e., 

when non-employment is lower, the EITC subsidy is higher, and a larger share of the working poor receives it. 

When visually comparing figures 4 and 5, it is easy to see that in figure 5 (lower non-employment) all of the 

tax/subsidy schedules were simply shifted upwards.  

Figure 5 
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3.3 Is the optimal piecewise linear EITC a trapezoid? 

In actual EITC systems the usual case is a trapezoid. However, we have seen in the previous sub-section that in 

most cases the optimal schedule is a triangle. One interesting question is: under which condition the trapezoid 

used in actual systems is optimal? 

In order to obtain a tax schedule which, in the lower wage range, takes the shape of a trapezoid, the following 

conditions must be met: the Marginal tax rate must be negative for the lowest wage group, Zero (or very close 

to Zero) for the 2nd lowest wage group, and positive for the 3rd lowest wage group. Thus the existence of an 

EITC subsidy is a necessary but insufficient condition for a trapezoid shaped tax schedule. Given a negative 

marginal tax rate for the lowest wage group, the marginal tax rate for the 2nd lowest wage group can be either 

positive, zero (or very close to zero), or in some extreme cases even negative. 

As we have shown in figures 1 and 2, in the presence of high wage gaps between the two bottom wage groups, 

the 2nd lowest wage group would (in most cases) pay a tax and not receive an EITC subsidy. Thus, when one’s 

aim is to characterize the optimal shape of the EITC trapezoid, such a case is somewhat less instructive. It is 

therefore useful to examine cases in which the pre-tax wage gaps between the 1st, 2nd and 3rd lowest wage 

groups are lower, and an EITC trapezoid is more likely to be obtained. 

Figure 6 shows the optimal schedules for two different levels of inequality aversion, in two different wage 

distributions of the bottom four groups. In one case the wage distribution ratio in the four bottom wage groups 

with respect to the bottom wage group is 1, 1.5, 2, and 3.55, respectively. And in the other case the wage 

distribution ratio in the four bottom wage groups with respect to the bottom wage group is 1, 1.2, 1.4, and 4, 

respectively. In both cases the non-employed account for 10% of this population – and the four bottom wage 

groups account for 12.5% each; the extensive margin elasticity is η = 1, and the intensive margin elasticity is 

ζ = 0.05. As can be seen, when the wage ratio between the two bottom wage groups is smaller, an EITC subsidy 

for the 2nd wage group is more likely. Furthermore, for low levels of inequality aversion (e.g. v=0.1), the EITC 
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schedule takes the familiar shape of a (flat) trapezoid - with a negative marginal tax for the bottom wage group; 

approximately zero marginal tax for the 2nd lowest wage group; and a positive marginal tax for the 3rd lowest 

wage group, which phases-out the subsidy to (approximately) zero. 

The comparison between the two cases shows that in the latter - , where wage gaps between the bottom 3 

groups are very small, but the wage gap between the fourth group and the third group is substantially larger -   

positive EITC subsidies are obtained not only for the two lowest wage groups but also for the 3rd group (when 

inequality aversion is low). This subsidy is completely phased out and turns into a high tax from the 4th group 

on. This result is driven by the large wage gap between the 4th group and the 3rd group. Since wage gaps 

between the bottom 3 groups are small, the phasing-stage is “shifted” towards the 4th group - that (due to its 

relatively high wages) can be taxed to allow for the redistribution of resources to the bottom 3 groups.  

Figure 6 
 

 

Note that when wage gaps in the bottom groups are small the EITC trapezoid is flatter and wider. 
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We have so far seen how differences in lower-end wage distributions and in non-employment rates can 

significantly affect the shape of the optimal EITC. It might therefore be a useful exercise, to examine to what 

extent these factors vary between countries, and within countries over time. 

4. An empirical approximation to the optimal EITC 

4.1 Estimating the Income distribution 

The Pareto log-normal (PLN) and the double Pareto log-normal (DPLN) distributions have been shown to be 

good approximations for income distributions (Reed and Wu 2008).  The pdf and the cdf for the PLN distribution 

are given by Colombi (1990) and Griffiths and Gholamreza (2012). 

1)f PLN(y; m, σ, α) =
α

y
ϕ (

lny − m

σ
) R(x1) 

2)FPLN(y; m, σ, α) = Φ (
lny − m

σ
) − ϕ (

lny − m

σ
) R(x1) 

And the pdf and cdf for the DPLN distribution, which was developed by Reed (2003) and Reed and Jorgensen 

(2004) are also given in Griffiths and Gholamreza (2012) as follows: 

3)f dPLN(y; m, σ, α) =
αβ

(α + β)y
ϕ (

lny − m

σ
) {R(x1) + R(x2)} 

4)FdPLN(y; m, σ, α) = Φ (
lny − m

σ
) − ϕ (

lny − m

σ
) {

βR(x1) − αR(x2)

α + β
} 

Where R(t) = [1 − Φ(t)]/ϕ(t) is a Mill’s ratio, ϕ(. ) and Φ(. ) are, respectively, the pdf and cdf for a standard 

normal random variable,  

x1 = ασ −
lny−m

σ
  and x2 = βσ +

lny−m

σ
 

Data and Empirical analysis 
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Using these specifications and sample based estimates for m  and for σ we derive approximations for income 

distributions for 11 countries and compare them to the actual sampled distributions. These countries are Israel, 

US, GBR, Germany, Spain, Brazil, Colombia, Uruguay, Russia, Denmark and Finland. For all countries, data was 

extracted from the Luxemburg Income Survey (LIS) database – which allows for a relatively harmonious 

comparison. For each country the latest available LIS data was used (which in most cases corresponds to 2013).  

Deriving estimates for actual income distributions 

Estimates for the actual income distributions in each country were derived as follows: the annual incomes of the 

bottom 97% wage earners were arbitrarily divided into 49 equal wage intervals and, where the bottom interval 

ranges from zero to 
1

50
∙ W97th percntile and the top interval is unbounded and ranges from 

49

50
∙ W97th percntile to 

infinity (in theory). Where W97th percntile is the income of the top earner in the 97th percentile. This 

specification was required in order to obtain wage intervals of reasonable size. Wages are bounded at the 

bottom but not at the top and thus an unbounded specification would have yielded wage intervals that are too 

large to provide any useful insight.  

Deriving PLN and DPLN approximations for income distributions  

In order to derive PLN and DPLN approximations for the income distribution of each country, sample estimates 

were obtained for m and σ, the first and the second moment of the (log-normalized) income distribution. Note 

that these parameters were computed for the entire sample of wage earners (not omitting the top 3 percent), 

in order to account for the Pareto behavior at right tail of the distribution. Once m and σ are obtained the 

distributions’ approximation is quite straightforward.  

Using (2) and (4), the cumulative share of wage earners in each of the 50 wage brackets was approximated – 

which allowed (by simple subtraction) the computation of the relative share of wage earners in each of the 50 

cohorts. Since α and β are initially unknown, they are computed via an iterative algorithm which minimizes the 



23 
 

root mean of squared errors between the observed and approximated relative shares (ci and ĉi). I.e. between 

the (binned) sampled distribution and the PLN/dPLN approximated distribution. Note that by minimizing the 

sum of square errors of the relative share of wage earners, (rather than the sum of square errors of the relative 

income shares si and ŝi), we are aiming for the best fit relative to the distribution of wage earners (and not 

relative to the distribution of income). It is of course possible to minimize the sum of errors relative to the 

distribution of income but such a design would give excess weight to discrepancies in higher income levels and 

little weight to discrepancies at low income levels – which is undesirable for our purposes given that the focus 

population in this paper is the working poor. 

Since the observed income distributions are computed from sample surveys, with sample sizes varying between 

countries (but generally in the range of 10K-20K observations10), the number of bins chosen to represent the 

observed income distributions can significantly affect the goodness of fit of the PLN and DPLN approximations. 

If too many bins are used than the observed sample data is too “noisy” and inaccurate to resemble a smooth 

distribution. This occurs (among other reasons) because sample data (which usually relies on self-reporting) 

tends to be bunched at round values. E.g., a survey participant who earns, say, 14,917 Dollars a year is likely to 

report that he earns 15,00011. This phenomenon, which is very visible in the data of each country, mandates 

that the number of bins would be small enough to allow for a relatively smooth (binned) observed distribution. 

On the other hand, if the number of bins is too small then much information is lost and thus the exercise is less 

instructive. The optimal balance can vary between countries, and depends on the size of the sample and the 

quality of the data. As noted, in our analysis, we used the same number of bins for each country, i.e. 50 bins. 

However, for Israel, for which we had data of slightly better quality12, we also experimented with different 

numbers of bins, and obtained a better fit with 20 bins. 

                                                           
10

 The US is an exception in that respect as sample size stands at over 56,000 observations. 
11

 Note that bunching at round values is also the result of the actual tendency of global salaries to be round sums. 
12

 While sample data for all countries was obtained from the LIS database, the data for Israel was taken directly from the 
2014 expenditures (and incomes) survey. That is in fact the same dataset which is later harmonized and used by LIS, but by 
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Figure 7 compares between the observed (binned) income distribution in Israel 2014, to the approximated 

DPLN distribution that was computed using the (log-normalized) sample mean and standard deviation. As can 

be seen, in most bins (cohorts) the observed frequency and the approximated frequency are very similar. An 

exception is the second cohort where the observed frequency is about 11% while the DPLN approximated 

frequency is about 16%. This Discrepancy is mainly due to bunching of the actual income distribution at the 

point of minimum wages. Thus many wage earners who would otherwise fall into the second cohort (2000 to 

4000 NIS), fall into the 3rd cohort (4000 to 6000 NIS) as minimum wages in 2014 stood at 4300 NIS.  

Figure 7 

 
The discrepancy (between observed and approximated frequencies) that is caused by the bunching at minimum 

wages, is even more pronounced when the approximation is derived from a simple log-normal distribution with 

no adjustments for the Pareto tails (figure 8). 

Figure 8 

                                                                                                                                                                                                         
using the original dataset we were able to obtain a cleaner and smoother income distribution, and for a later year (2014 
instead of 2012).  
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As evident in figures 9a and 9b, In the case of Israel, the PLN distribution was found to be the most suitable to 

adjust for this issue and derive a better fit. The root mean square error of the PLN approximation (from the 

observed distribution) was 0.99%, compare to 1.49% for the DPLN, and 1.68% for the log-normal 

approximation. It is noteworthy that the superior performance of the PLN relative to the DPLN was also 

observed in most of the other countries that we examined. Interestingly these results differ from the results 

that were obtained by Griffiths and Gholamreza (2012), who observed in 10 countries sample a slightly superior 

performance of the DPLN relative to the PLN. These differences might stem from the fact that Griffiths and 

Gholamreza (2012), examined the income distributions of developing countries while we examined mostly 

developed countries. Another possible explanation for these differences, is the fact that Griffiths and 

Gholamreza (2012) aimed to minimize the root mean square errors (RMSE) of income shares (si), while we, (due 

to our focus on low income groups), aimed to minimize the RMSE of the relative shares of wage earners (ci). 

Indeed, our simulations also show that for the minimization of RMSE of (si), the DPLN’s performance is close 

and in some cases better than that of the PLN. Thus, a possible conclusion is that the PLN performs better when 

the distribution of wages is of interest, and the DPLN (might) perform slightly better when the distribution of 

income is of interest. 
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Figure 9a 

 

Figure 9b 

 

A further improvement of the fit of the PLN / DPLN approximations for Israel (given the issue of bunching at 

minimum wages) – can be obtained by using a slightly smaller standard deviation which yields a taller, narrower 

distribution, which better fits the spike of the observed distribution at minimum wage level. This adjustment 

was conducted through an iteration process which minimized the Chi-square values of the approximated 

distributions relative to the observed distribution. The best fitting (log-normalized) adjusted standard deviation 

(in the case of Israel) was found to be eight percent smaller of the actual (log-normalized) standard deviation 

that was observed in the sample. This adjustment produced in all cases slightly smaller mean square errors. 

Thus, the (adjusted) root mean square error of the PLN approximation (from the observed distribution) was 

0.97%, compare to 1.41% for the DPLN, and 1.43% for the log-normal approximation. 
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Additional challenges of the observed data 

As noted, survey based income data tend to be bunched at round values and at minimum wage level. 

Furthermore, the quality of the sampling might not always be optimal, due to methodological issues such as 

inaccurate measurement of income, false reporting and censoring at high values13. Clearly, these issues tend to 

reduce the goodness of fit of the (smooth) approximated distributions to the (noisy) observed distributions. 

Figure 10 demonstrates this point by comparing the PLN approximated distribution of wage earners, to the 

sample based (N= 17,231) observed distribution of wage earners in Britain 2013. Both distributions are 

represented by 50 wage intervals (bins) of equal length. As evident, the sample based observed distribution is 

not very smooth and perhaps a smaller number of bins could improve the fit (with the cost of some loss of 

information). Furthermore, it appears that for Britain, just like Israel, the issue of bunching at minimum wage 

level is the one that most reduces the goodness of fit. This last point is an important one because it is a 

phenomenon that has so far been generally ignored when conducting PLN / DPLN approximations for income 

distributions. Perhaps, certain adjustments (such as the standard deviation adjustments described above), could 

further improve the goodness of fit of these approximations in the future. 

 

Figure 10 

                                                           
13

 Typically, data for extremely rich individuals are not included in income surveys in order to prevent possible recognition 
and exposure of sensitive information that concerns these (potentially) high profile individuals. 



28 
 

 

Measures of goodness of fit 

Tables 2a and 2b present key statistics regarding the goodness of fit of the approximated PLN and DPLN 

distributions (respectively), for the 11 countries that were examined. The tables report for each country, the 

following statistics: sample year, number of bins sampled; optimal values of α (and β for the DPLN); root of the 

mean of square errors between the observed and approximated relative share of wage earners (ci and ĉi)- 

RMSEc = √N−1 ∑ [100(ĉi − ci)]2N
i=1 ;  root of the mean of square errors between the observed and 

approximated income shares (si and ŝi)- RMSEs = √N−1 ∑ [100(ŝi − si)]2N
i=1 ; and the Kolmogorov-Smirnov 

(KS) statistic that is based on the maximum difference between actual and approximated cumulative 

distribution. For all statistics presented, smaller values signify a better fit. In that respect however, it is 

important to note that the choice of number of bins has a substantial effect on the size of the statistics. 

Specifically, the larger the number of bins the smaller are the RMSEc and RMSEs. Thus, the relative goodness of 

fit of these approximations is only comparable when the number of bins is the same. 

As evident in the Table 1, for the PLN approximations the best goodness of fit is obtained for the GBR, closely 

followed by Israel with RMSEc values of 0.52 and 0.61 (respectively). As explained above, these results stem not 
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only from the resemblance of the observed income distributions in these countries to a Pareto Log-normal 

distribution – but also from the better quality of the sample data that was available for those countries. 

When comparing tables table 2a to 2b, it is evident that for most countries the RMSEc of the PLN is smaller (i.e. a 

better fit) than that of the DPLN. As for the RMSEs and KS statistics, one cannot say that the PLN outperforms the 

DPLN, nor can one say the opposite. In about half the countries the RMSEs and KS statistics of the PLN are smaller 

than that of the DPLN, and in the other half the opposite occurs. Using the RMSE criteria we conclude that the PLN is 

a better approximation and thus we will concentrate on it. 

Table 2a 

Pareto log-normal approximations compared to observed distributions 

country year 
# of 
bins 

𝐑𝐌𝐒𝐄𝐜 𝐑𝐌𝐒𝐄𝐬 
K.S. 

 (λ=1) 
K.S. 

 (λ=1.2) 
α 

Israel 2014 20 0.99 1.25 0.059* 0.025** 8.6 

Israel adjusted (σ * 0.92) 2014 20 0.97 0.90 0.048** 0.020** 9.0 

Israel adjusted (σ = 0.75) 2014 20 1.22 0.87 0.033** 0.014** 11.0 

Israel 2014 50 0.61 0.55 0.106 0.044** 7.5 

Israel adjusted (σ = 0.75) 2014 50 0.49 0.39 0.082** 0.034** 8.0 

Israel 2012 50 0.75 0.66 0.117 0.049** 6.7 

US 2013 50 0.87 1.06 0.137 0.057* 6.5 

GBR 2013 50 0.52 0.60 0.121 0.051* 6.3 

Germany 2010 50 0.96 0.88 0.227 0.095* 3.4 

Brazil 2013 50 1.46 1.45 0.141 0.059* 8.0 

Colombia 2013 50 1.49 1.45 0.204 0.085* 3.3 

Uruguay 2013 50 0.80 0.91 0.141 0.059* 5.8 

Russia 2013 50 1.66 2.18 0.130 0.054* 8.0 

Spain 2013 50 0.83 0.70 0.236 0.098* 2.6 

Finland 2013 50 1.31 1.28 0.347 0.145 2.5 

Denmark 2010 50 1.46 1.39 0.374 0.156 2.6 

* Significant at 10 percent; ** significant at 5 percent. 
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Table 2b 

Double Pareto log-normal approximations compared to observed distributions 

Country year 
# of 
bins 

𝐑𝐌𝐒𝐄𝐜 𝐑𝐌𝐒𝐄𝐬 
K.S. 

 (λ=1) 
K.S. 

 (λ=1.2) 
α β 

Israel 2014 20 1.49 0.96 0.056* 0.023** 8.6 7.3 

Israel adjusted (σ*0.92) 2014 20 1.41 0.62 0.048** 0.020** 9.0 7.6 

Israel adjusted (σ=0.75) 2014 20 1.13 0.59 0.030** 0.012** 4.2 6.2 

Israel 2014 50 0.73 0.43 0.092* 0.038** 7.3 7.3 

Israel adjusted (σ= 0.75) 2014 50 0.52 0.39 0.065* 0.027** 4.6 8.3 

Israel 2012 50 0.79 0.66 0.084* 0.035** 4.0 7.4 

US 2013 50 0.92 1.08 0.177 0.074* 2.7 6.5 

GBR 2013 50 0.56 0.65 0.108 0.045** 3.3 7.5 

Germany 2010 50 0.97 0.89 0.238 0.099* 2.2 6.4 

Brazil 2013 50 1.56 1.54 0.117 0.049** 4.6 7.1 

Colombia 2013 50 1.47 1.44 0.192 0.080* 2.7 7.9 

Uruguay 2013 50 0.84 0.91 0.150 0.063* 3.3 7.5 

Russia 2013 50 1.67 2.18 0.118 0.049** 4.8 8.4 

Spain 2013 50 0.84 0.70 0.249 0.104 1.7 5.1 

Finland 2013 50 1.36 1.27 0.352 0.147 1.8 6.5 

Denmark 2010 50 1.51 1.39 0.387 0.161 1.8 7.2 

4.2 Using PLN approximations to assess the effect of changes in income distribution on the optimal tax 

schedule 

As previously shown by (Reed and Wu 2008), Colombi (1990) and Griffiths and Gholamreza (2012), and as also 

evident in figures 9-10, and from tables 2a and 2b, the PLN approximation  fits quite well observed distribution 

of wage earners. By taking advantage of this good fit, we aim to examine, in a generalized framework, how 

changes in income distribution affect the optimal tax schedule. For this end, we use adjust the PLN 

approximation for Israel's distribution of wage earners in 2014, to fit the framework of our simulations, which 

compute the optimal tax schedule on the guidelines of Saez (2002). This adjustment is quite straightforward. 

First, we set the number of bins in the PLN approximation, to match the number of income groups in the tax 

simulations - 8 wage groups (ℎ1-ℎ8), not including the non-employed (ℎ0). We then adjust the pre-tax size of 

the approximated shares of wage earners (�̂�𝑖), to account for the fact that a portion of the population is always 
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not employed14, by multiplying them by (a theoretical) pre-tax employment rate15 (1 − ℎ0) so that:   ∀ 𝑖 > 0 →

ℎ𝑖 = �̂�𝑖 ∙ (1 − ℎ0).  

Once these adjustments are made, and the approximated sizes of h1-h8 & w1-w8 are known, we proceed with 

our simulations and compute the optimal tax schedule on the guidelines of Saez (2002). In the first simulation, 

we use the benchmark case in which the PLN approximation is based on the observed (log-normalized) mean 

and standard deviation of the Israeli income distribution in 2014, and the optimal α that was computed by 

iteration. This benchmark case represents an estimate for the (desired) optimal tax schedule for Israel in 2014.   

In the subsequent simulations we generate artificial PLN income distributions by making small changes in the 

parameters of interest,  μ, σ and α (one parameter at a time). Such an exercise is quite instructive as it enables 

us to determine, in quite general manner, how the optimal tax schedule changes, given, for example, a change 

(over time in the standard deviation, of a country's income distribution. We believe that this generalized 

framework can help simplify tax related policy-making, by providing relatively simple and implementable 

insights regarding the relationship between the evolution of a country's income distribution and the evolution 

of its tax schedule over time. 

Before performing the simulation let us motivate the discussion.  First, Pikety and Saez (2007) showed that one 

of striking changes in the income distribution of developed economies is the increase of all types of income 

(wage, business income, capital income and capital gains) which more than doubled between 1960 and 2000 for 

the top 0.1 percent of the income distribution. In our analysis the increase of the right tail can be mimicked by 

an increase in  α.  Second, the UN (2012) on income inequality shows16 that in most countries there was an 

increase in income inequality, which affect directly the wage earners in general and the working poor in 

particular. This change will be mimicked in our simulations by a change in  σ. 

                                                           
14

 E.g. individuals with disabilities. 
15 In our simulations we use a default, pre-redistribution non-employment rate of (h0 = 5%) - which, in the simulations’ 

post-tax equilibrium, yields plausible non-employment rates (that increase with inequality aversion). 

 
16

 United Nations (2012), Table 3.2. 
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One small complication that arose during these simulations stemmed from the fact that the best fitting 

𝛼 for the PLN approximation of Israel’s income distribution was quite high (8.6). Thus, a simulated increase in 𝜎, 

would make the value of   x1 = ασ −
lny−m

σ
  too high, which for low values of y, would make the inverse mills 

ratio R(x1) equal to zero – resulting in a discontinuous PLN approximation. To avoid this complication, we set 

the benchmark case to be 𝛼0 = 7 (instead of 8.6); with 𝜎0 = 0.875 and 𝜇0 = 8.944, corresponding to the mean 

and standard-deviation of observed (log-normalized) income distribution in Israel in 2014. It is important to 

note that this (slightly augmented) benchmark case, still closely resembles the observed distribution. 

Furthermore, since our main objective is to examine how a changes in 𝛼 and 𝜎 affect the optimal tax schedule 

(relative to a plausible benchmark case), the insights of the analysis are not affect by this small adjustment of 

the benchmark case. 

Thus, after computing the optimal tax schedule for this benchmark case, we proceeded by deriving PLN 

approximations for the following four cases:  𝛼 = 0.9 ∙ 𝛼0 = 6.3 ; = 0.8 ∙ 𝛼0 = 5.6 ; 

 𝜎 = 𝜎0 ∙ 1.1 = 0.963 ; 𝜎 = 𝜎0 ∙ 1.2 = 1.050 . In each of these cases, only one parameter of interest was 

changed at a time, and the other parameters kept their benchmark values. Once we derived PLN 

approximations for these four (simulated) income distributions, we proceeded by computing for each 

distribution, the optimal tax schedule – following the guidelines of Saez (2002), as described above.  

Table 2 presents the optimal tax schedules and additional relevant statistics for the benchmark case and the 

four simulated distributions. As evident from the simulations results, a reduction in the size of  𝛼 is different in 

essence from an increase in 𝜎. The former increases the size of the right tail of the distribution (i.e. the relative 

share of the rich increases) but slightly decreases the relative share of the left tail (the working poor); while the 

latter, increases the size of both tails – making the pdf shorter and wider. Furthermore, a 10% change in 𝜎 

seems to have a much stronger effect on the shape of the distribution than a 10% change in 𝛼. As result, a 10% 

change in 𝛼 (relative to the benchmark distribution), barely affects the optimal tax schedule at equilibrium and 

the marginal tax rates are only very slightly lower than the benchmark case. In contrast, a 10% change in 𝜎 



33 
 

substantially, increases the marginal tax rate for the high and middle income groups, and to a lesser extent, for 

the low income groups. Consequently, it increases the total amount of taxes collected. This result is not 

surprising given the fact that an increase in the 𝜎 of the log-normalized distribution, increases the mean income 

of the actual distribution. It is however a bit surprising that an increase in 𝜎 slightly decreases the optimal EITC 

subsidy, despite the rise in inequality. This result is due to the larger share of the working poor, which raises the 

aggregate cost of the EITC subsidy. 
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Table 3: Optimal tax schedules and relevant statistics for simulated PLN distributions, v=0.25 

Upper bound of wage interval 0 2000 4000 6000 8000 10000 12000 14000 ∞ 

group size before taxes  (hi) ℎ0 ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6 ℎ7 ℎ8 

𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘: 𝛼 = 7, 𝜎 = 0.875, 𝜇 = 8.94 5.0% 4.4% 13.2% 13.9% 11.8% 9.5% 7.6% 6.0% 28.6% 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 1: 𝛼 ∙ 0.9 5.0% 4.3% 13.0% 13.7% 11.7% 9.5% 7.6% 6.0% 29.2% 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 2: 𝛼 ∙ 0.8 5.0% 4.2% 12.6% 13.5% 11.6% 9.5% 7.6% 6.1% 30.0% 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 3: 𝜎 ∙ 1.1 5.0% 5.9% 13.9% 13.1% 10.9% 8.7% 6.9% 5.6% 30.1% 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 4: 𝜎 ∙ 1.2 5.0% 9.6% 12.1% 12.4% 10.0% 8.0% 6.4% 5.2% 31.3% 

group size after taxes (h'i) ℎ′0 ℎ′1 ℎ′2 ℎ′3 ℎ′4 ℎ′5 ℎ′6 ℎ′7 ℎ′8 

𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘: 𝛼 = 7, 𝜎 = 0.875, 𝜇 = 8.94 9.1% 6.0% 13.6% 11.3% 8.3% 9.5% 7.6% 6.0% 28.6% 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 1: 𝛼 ∙ 0.9 9.1% 5.9% 13.3% 11.2% 8.2% 9.5% 7.6% 6.0% 29.2% 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 2: 𝛼 ∙ 0.8 9.1% 5.7% 13.0% 11.0% 8.2% 9.5% 7.6% 6.1% 30.0% 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 3: 𝜎 ∙ 1.1 9.0% 8.0% 14.2% 10.4% 7.2% 8.7% 6.9% 5.6% 30.1% 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 4: 𝜎 ∙ 1.2 8.8% 12.8% 12.1% 9.2% 6.2% 8.0% 6.4% 5.2% 31.3% 

Average wage in group 𝑤0 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6 𝑤7 𝑤8 

𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘: 𝛼 = 7, 𝜎 = 0.875, 𝜇 = 8.94 - 1,000 3,000 5,000 7,000 9,000 11,000 13,000 17,060 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 1: 𝛼 ∙ 0.9 - 1,000 3,000 5,000 7,000 9,000 11,000 13,000 16,470 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 2: 𝛼 ∙ 0.8 - 1,000 3,000 5,000 7,000 9,000 11,000 13,000 15,820 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 3: 𝜎 ∙ 1.1 - 1,000 3,000 5,000 7,000 9,000 11,000 13,000 19,200 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 4: 𝜎 ∙ 1.2 - 1,000 3,000 5,000 7,000 9,000 11,000 13,000 23,600 

Marginal tax rate in group 𝑀𝑡0 𝑀𝑡1 𝑀𝑡2 𝑀𝑡3 𝑀𝑡4 𝑀𝑡5 𝑀𝑡6 𝑀𝑡7 𝑀𝑡8 

𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘: 𝛼 = 7, 𝜎 = 0.875, 𝜇 = 8.94 - -36.1% 13.9% 49.7% 59.0% 72.3% 75.0% 77.3% 39.0% 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 1: 𝛼 ∙ 0.9 - -36.0% 13.9% 49.6% 58.8% 72.0% 74.6% 76.9% 38.0% 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 2: 𝛼 ∙ 0.8 - -35.8% 13.9% 49.5% 58.5% 71.8% 74.3% 76.4% 36.7% 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 3: 𝜎 ∙ 1.1 - -35.2% 14.7% 54.9% 64.4% 75.4% 78.3% 80.7% 41.8% 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 4: 𝜎 ∙ 1.2 - -34.2% 17.8% 62.9% 71.6% 79.3% 82.2% 84.5% 46.4% 

Average tax rate in group 𝐴𝑡0 𝐴𝑡1 𝐴𝑡2 𝐴𝑡3 𝐴𝑡4 𝐴𝑡5 𝐴𝑡6 𝐴𝑡7 𝐴𝑡8 

𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘: 𝛼 = 7, 𝜎 = 0.875, 𝜇 = 8.94 - -36.1% -2.7% 18.3% 29.9% 39.3% 45.8% 50.6% 47.9% 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 1: 𝛼 ∙ 0.9 - -36.0% -2.7% 18.2% 29.8% 39.2% 45.6% 50.4% 47.8% 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 2: 𝛼 ∙ 0.8 - -35.8% -2.7% 18.2% 29.7% 39.1% 45.5% 50.2% 47.8% 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 3: 𝜎 ∙ 1.1 - -35.2% -1.9% 20.8% 33.3% 42.6% 49.1% 54.0% 50.1% 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 4: 𝜎 ∙ 1.2 - -34.2% 0.5% 25.4% 38.6% 47.7% 53.9% 58.6% 53.2% 

Tax payed by average group member 𝑇0 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7 𝑇8 

𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘: 𝛼 = 7, 𝜎 = 0.875, 𝜇 = 8.94 - (364) (82) 904 1,936 3,190 4,460 5,750 7,190 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 1: 𝛼 ∙ 0.9 - (367) (81) 903 1,931 3,182 4,447 5,731 6,934 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 2: 𝛼 ∙ 0.8 - (366) (80) 902 1,926 3,172 4,433 5,709 6,659 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 3: 𝜎 ∙ 1.1 - (358) (58) 1,029 2,135 3,429 4,740 6,072 8,410 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 4: 𝜎 ∙ 1.2 - (344) 15 1,255 2,442 3,778 5,132 6,505 10,876 

Average after-tax income from work 𝑐0 𝑐′1 𝑐′2 𝑐′3 𝑐′4 𝑐′5 𝑐′6 𝑐′7 𝑐′8 

𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘: 𝛼 = 7, 𝜎 = 0.875, 𝜇 = 8.94 - 1,382 3,086 4,050 4,541 4,926 5,281 5,605 7,827 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 1: 𝛼 ∙ 0.9 - 1,385 3,085 4,051 4,547 4,936 5,298 5,630 7,567 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 2: 𝛼 ∙ 0.8 - 1,384 3,084 4,053 4,554 4,949 5,317 5,659 7,270 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 3: 𝜎 ∙ 1.1 - 1,376 3,061 3,919 4,283 4,612 4,909 5,174 8,387 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 4: 𝜎 ∙ 1.2 - 1,361 2,985 3,681 3,882 4,150 4,385 4,589 9,589 
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Table 4 shows the average amount of taxes collected, per worker and per person. This comparison provides a 

good measure of scale for the effect of the change in 𝛼 and in 𝜎. While a 20% decrease in 𝛼 only depresses the 

sum of collected taxes by 2%, a 20% increase in 𝜎 increases the sum of collected taxes by 40.4%. 

Table 4: Average tax per person & per worker for simulated PLN distributions (given optimal EITC)  

  

average 
T per 
worker 

average 
T per 
person 

% 
change 
in T per 
worker 

% 
change 
in T per 
person 

𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘: 𝛼 = 7, 𝜎 = 0.875, 𝜇 = 8.94 3,599  3,271  
 

  

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 1: 𝛼 ∙ 0.9 3,562  3,238  -1.0% -1.0% 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 2: 𝛼 ∙ 0.8 
          
3,525  

         
3,205  -2.1% -2.0% 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 3: 𝜎 ∙ 1.1 
          
4,086  

         
3,719  13.5% 13.7% 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 3: 𝜎 ∙ 1.2 
          
5,038  

         
4,594  40.0% 40.4% 

 

Figure 11 demonstrates (for v=0.25, ℎ0 = 5%) the change in the shape of the EITC trapezoid, relative to the 

benchmark, given (simulated) changes in α and in σ. As evident, the size of the EITC subsidy granted to the 

lowest income group (𝑤1), changes only very slightly given a change in α or in σ. However, the phasing-out 

stage becomes visibly steeper relative to the benchmark, after an increase in σ. Thus one can conclude that the 

EITC subsidy is quite robust to changes in the relative shares of income groups, but the phasing-out stage is 

more sensitive to such changes. 
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Figure 11 

 

5. Simulated increase in minimum wages 

In order to examine how the EITC schedule is affected by a rise in minimum wages, we take again as a 

benchmark, the case shown above, where  α0 = 7, σ0 = 0.875 and μ0 = 8.944. Again, the level of inequality 

aversion  v = 0.25, and the pre-tax share of the non-employed was h0 = 5%.  

We then simulate two simple scenarios, in which minimum wage has risen, and compute the (new) 

optimal tax schedules, given this change. In the first scenario we mimic the rise in minimum wage by 

transferring 5 percentage points from h2 to h3. This change corresponds to a shift of workers from the second 

wage group to the third, following a rise in minimum wage, that brought their wages above the upper (wage) 

bound of the second group. In the second scenario we simply increase the average wage of the 2nd wage group 

by 1000 NIS (from 3000 to 4000). This change corresponds to a rise in minimum wage, such that the new wage 

does not surpass the upper (wage) bound of the second group. 

Table 5 presents the optimal tax schedules and additional relevant statistics for the benchmark case and the 2 

simulated scenarios. As evident, in both simulated scenarios of minimum wage rise, the optimal EITC subsidy is 

slightly higher than the benchmark case subsidy (36.1%). The highest subsidy (38%) is obtained in the first 

scenario (where there is a shift of workers from h2 to h3) – compared to 37% in the second scenario (where w2 
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rises by 1000 NIS). However, the more substantial differences between these 3 cases are observed in the 2nd 

and 3rd wage groups. In both scenarios the marginal tax rate of the 2nd wage group rises relative to the 

benchmark case of 13.9%. Given a shift of workers from h2 to h3 the marginal tax rate of the 2nd group actually 

rises (to 16.4%), which can be a bit counter intuitive, but can be explained by the fact that the h2 has shrunk – 

which makes its relative importance for the central planner smaller. More intuitive is the fact that a 1000 NIS 

rise in w2 results in a rise in the marginal tax rate of the 2nd group (to 18.1%). This group now earns more and 

therefore more heavily taxed. But the most interesting differences between these scenarios are manifested in 

the 3rd wage group’s marginal tax rates. While in the benchmark case the marginal tax rate for the 3rd group is 

49.7%, the two simulated cases yield opposite results. A shift of workers from h2 to h3 results in a decline of the 

3rd groups marginal tax to 40.1%; while a 1000 NIS rise in w2 raises the 3rd group’s marginal tax rate to 61%! 

The former result is quite intuitive: There are less working poor (h2), and more medium-wage individuals (h3), 

and therefore the (effective) tax base is broader and a smaller marginal rate can be imposed. The latter result 

however, requires a more complex explanation. As noted, the (significant) rise in w2 has allowed for higher 

marginal taxation of the 2nd wage group, but to a limited extent – as a higher marginal tax rate to this group 

would make the phasing-out stage to steep and create an undesired distortion to work incentives. At the same 

time, the wage gap between the 2nd and 3rd groups has been cut by half – and consequently so has the tax 

bracket of the 3rd group. Thus, the 3rd group’s marginal tax is now higher (61%), but it is subject to this 

marginal rate only for a bracket of 1000 NIS (from 4000 to 5000 NIS), compared to a bracket of 2000 NIS before 

the rise in minimum wage. Consequently, the 3rd group’s average tax rate is actually lower than in the 

benchmark case – which makes sense as the 2nd group now bears a bigger share of the tax burden. 

Figure 12 presents the optimal EITC triangles for the benchmark case and the two scenarios described above 

(which simulate a rise in minimum wages). As evident, the size of the EITC subsidy is modestly affected by a rise 

in minimum wage but the phasing out stage becomes significantly steeper – especially for the case where  𝑤2 

rises by 1000 NIS. 
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Table 5: Optimal tax schedules and relevant statistics for simulated rise in minimum wage, v=0.25 

Upper bound of wage interval 0 2000 4000 6000 8000 10000 12000 14000 ∞ 

group size before taxes  (hi) ℎ0 ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6 ℎ7 ℎ8 

𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘: 𝛼 = 7, 𝜎 = 0.875, 𝜇 = 8.94 5.0% 4.4% 13.2% 13.9% 11.8% 9.5% 7.6% 6.0% 28.6% 

𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1: 5𝑝𝑝 𝑠ℎ𝑖𝑓𝑡 𝑓𝑟𝑜𝑚 ℎ2 𝑡𝑜 ℎ3  5.0% 4.4% 8.2% 18.9% 11.8% 9.5% 7.6% 6.0% 28.6% 

𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 2: 1000 𝑁𝐼𝑆 𝑟𝑖𝑠𝑒 𝑖𝑛 𝑤2 5.0% 4.4% 13.2% 13.9% 11.8% 9.5% 7.6% 6.0% 28.6% 

group size after taxes (h'i) ℎ′0 ℎ′1 ℎ′2 ℎ′3 ℎ′4 ℎ′5 ℎ′6 ℎ′7 ℎ′8 

𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘: 𝛼 = 7, 𝜎 = 0.875, 𝜇 = 8.94 9.1% 6.0% 13.6% 11.3% 8.3% 9.5% 7.6% 6.0% 28.6% 

𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1: 5𝑝𝑝 𝑠ℎ𝑖𝑓𝑡 𝑓𝑟𝑜𝑚 ℎ2 𝑡𝑜 ℎ3  9.3% 6.1% 8.4% 16.0% 8.5% 9.5% 7.6% 6.0% 28.6% 

𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 2: 1000 𝑁𝐼𝑆 𝑟𝑖𝑠𝑒 𝑖𝑛 𝑤2 9.4% 6.1% 12.7% 11.7% 8.5% 9.5% 7.6% 6.0% 28.6% 

Average wage in group 𝑤0 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6 𝑤7 𝑤8 

𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘: 𝛼 = 7, 𝜎 = 0.875, 𝜇 = 8.94 - 1,000 3,000 5,000 7,000 9,000 11,000 13,000 17,060 

𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1: 5𝑝𝑝 𝑠ℎ𝑖𝑓𝑡 𝑓𝑟𝑜𝑚 ℎ2 𝑡𝑜 ℎ3  - 1,000 3,000 5,000 7,000 9,000 11,000 13,000 17,060 

𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 2: 1000 𝑁𝐼𝑆 𝑟𝑖𝑠𝑒 𝑖𝑛 𝑤2 - 1,000 4,000 5,000 7,000 9,000 11,000 13,000 17,060 

Marginal tax rate in group 𝑀𝑡0 𝑀𝑡1 𝑀𝑡2 𝑀𝑡3 𝑀𝑡4 𝑀𝑡5 𝑀𝑡6 𝑀𝑡7 𝑀𝑡8 

𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘: 𝛼 = 7, 𝜎 = 0.875, 𝜇 = 8.94 - -36.1% 13.9% 49.7% 59.0% 72.3% 75.0% 77.3% 39.0% 

𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1: 5𝑝𝑝 𝑠ℎ𝑖𝑓𝑡 𝑓𝑟𝑜𝑚 ℎ2 𝑡𝑜 ℎ3  - -38.0% 16.4% 40.1% 59.8% 72.0% 74.7% 77.1% 38.7% 

𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 2: 1000 𝑁𝐼𝑆 𝑟𝑖𝑠𝑒 𝑖𝑛 𝑤2 - -37.0% 18.1% 61.0% 58.5% 71.6% 74.4% 76.8% 38.4% 

Average tax rate in group 𝐴𝑡0 𝐴𝑡1 𝐴𝑡2 𝐴𝑡3 𝐴𝑡4 𝐴𝑡5 𝐴𝑡6 𝐴𝑡7 𝐴𝑡8 

𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘: 𝛼 = 7, 𝜎 = 0.875, 𝜇 = 8.94 - -36.1% -2.7% 18.3% 29.9% 39.3% 45.8% 50.6% 47.9% 

𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1: 5𝑝𝑝 𝑠ℎ𝑖𝑓𝑡 𝑓𝑟𝑜𝑚 ℎ2 𝑡𝑜 ℎ3  - -38.0% -1.7% 15.0% 27.8% 37.6% 44.4% 49.4% 46.9% 

𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 2: 1000 𝑁𝐼𝑆 𝑟𝑖𝑠𝑒 𝑖𝑛 𝑤2 - -37.0% 4.3% 15.7% 27.9% 37.6% 44.3% 49.3% 46.7% 

Tax payed by average group member 𝑇0 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7 𝑇8 

𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘: 𝛼 = 7, 𝜎 = 0.875, 𝜇 = 8.94 - (364) (82) 904 1,936 3,190 4,460 5,750 7,190 

𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1: 5𝑝𝑝 𝑠ℎ𝑖𝑓𝑡 𝑓𝑟𝑜𝑚 ℎ2 𝑡𝑜 ℎ3  - (386) (51) 745 1,812 3,069 4,341 5,631 7,061 

𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 2: 1000 𝑁𝐼𝑆 𝑟𝑖𝑠𝑒 𝑖𝑛 𝑤2 - (376) 172 777 1,817 3,068 4,334 5,620 7,040 

Average After tax income from work 𝑐0 𝑐′1 𝑐′2 𝑐′3 𝑐′4 𝑐′5 𝑐′6 𝑐′7 𝑐′8 

𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘: 𝛼 = 7, 𝜎 = 0.875, 𝜇 = 8.94 - 1,382 3,086 4,050 4,541 4,926 5,281 5,605 7,827 

𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1: 5𝑝𝑝 𝑠ℎ𝑖𝑓𝑡 𝑓𝑟𝑜𝑚 ℎ2 𝑡𝑜 ℎ3  - 1,404 3,053 4,217 4,701 5,083 5,438 5,762 7,999 

𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 2: 1000 𝑁𝐼𝑆 𝑟𝑖𝑠𝑒 𝑖𝑛 𝑤2 - 1,395 3,819 4,184 4,694 5,086 5,447 5,777 8,027 
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Figure 12 
 

 

6. Summary and conclusions 

While the EITC is becoming a leading program for coping with poverty, its optimal design is still a subject that 

merits further analysis. In this paper we build a model for calculating the optimal linear EITC and run simulations 

for obtaining the optimal piecewise linear schedule. Our model shows that in the linear model and in the 

presence of unemployment, an increase in inequality aversion implies a reduction of the optimal EITC. Our 

simulations show that the optimal piecewise linear schedule is a triangle, instead of a trapezoid, as actually 

implemented in countries that adopted the EITC like the U.S. or Israel. 

An interesting extension is simulating the optimal EITC taking into account a realistic distribution of wages. By 

using data for several countries we show that the Pareto-lognormal distribution is a good approximation for the 

density of wages. By using Root Mean Squared Errors and Kolmogorov-Smirnov statistics we show that this 

distribution fits real data better than other distributions, like the double Pareto-lognormal distribution. By 

allowing changes in the parameters of the Pareto-lognormal distribution we obtained that changes in the share 

of the "very rich" have a lower impact on the optimal EITC than changes in the variance that affect the share of 

the working poor. 
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Finally we check the impact of an increase in the minimum wage on the optimal EITC. Our simulations show that 

while the size of the EITC subsidy is modestly affected by a rise in minimum wage, the phasing out stage 

becomes significantly steeper. 
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