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We consider a risk averse decision maker who dislikes ambiguity
as in the Ellsberg urns and compare the certainty equivalent of this
gamble with the certainty equivalent of the anchoring probabilistic
lottery. We deal first with the Choquet EU model and show that un-
der some conditions on the capacity ν, when independent ambiguous
gambles are repeated and the expected value of the anchoring lot-
tery is zero, the difference between the average ambiguous and risky
certainty equivalents converges to zero. When the parallel expected
value is positive, we show that if the average certainty equivalent of
the risky lottery is non-negative, then so is the limit of the average
value for the ambiguous model. These results do not extend to the
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1 Introduction

A patient sees his doctor and it is clear to both of them that a treatment
may improve his health. The doctor offers him two possible treatments. A
standard, well investigated one, which with probability p leads to a good out-
come and with probability 1− p leads to an outcome that is worse than the
no-treatment outcome. Alternatively, she offers him a new treatment with
somewhat ambiguous probabilities of success. It is however known that what-
ever the outcome, it improves over that of the standard treatment. Moreover,
although the probabilities are not known for sure, they are believed to be
somewhere around p : 1 − p. The patient is ambiguity averse, and as the
improvement in the outcomes of the new treatment is not much, he prefers
the old treatment with the known probability of success. In particular, he
may prefer the standard treatment to no treatment, which in turn he prefers
to the ambiguous one.

The doctor does not have any information she did not share with the
patient. Moreover, although she knows that she will see many patients like
him, she believes that she won’t gain any information about the probabil-
ity of success of the new treatment, as this probability depends entirely on
unobservable charactristics of the patients. Her preferences over risk and un-
certain prospects are the same as the patient’s (alternatively, she adopts the
patient’s preferences). Does it follow that she too will prefer the standard
treatment to the new one?

Although they have exactly the same information and preferences, there
is one dimension in which the patient and the doctor are different, and this is
the number of cases they face. The patient sees only one case, his. Ambiguity
aversion can be explained as fear of the unknown. Many people believe that
they are unlucky and therefore, if they choose the ambiguous prospect, they’ll
find out that the winning probabilities took a bad turn and are on the lower
side of the expectations. But can people really believe that they are always
unlucky? The doctor is ambiguity averse, but as she is facing many similar
cases, her aversion to each case is probably diminishing. Our aim in this
paper is to formalize this intuition. Our main results show that under some
assumptions, within the Choquet expected utility model (Schmeidler [26]),
the following results hold. If the expected value of the gamble with the known
probabilities is zero, then the average certainty equivalents of the repeated
ambiguous and the repeated probabilistic gambles converge to each other
(Theorem 1). If the expected value of the known gamble is positive, when
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the certainty equivalents of the probablilstic gamble are non-negative, then in
the limit, the average certainty equivalent of the ambiguous lottery becomes
non-negative (Theorem 2). And when the utility is bounded from above
and the average certainty equivalents of the probabilistic gamble is positive,
the ambiguous lotteries eventually become desirable. Then we show that an
analogue of Theorem 1 holds within the smooth model, under some other
assumptions.

These results lead to immediate policy-making questions. Suppose that
the risky and ambiguous treatment have zero expected value. Suppose fur-
ther that the ambiguous treatment is less expensive than the probabilistic
one, but the difference is less than the difference between the two certainty
equivalents of the patient. Should society encourage, maybe even force, the
use of the ambiguous treatment? Patients may be willing to pay the extra
price for the unambiguous treatment, but if we adopt the point of view of
care takers (who don’t have any better information) we may opt out for the
ambiguous treatment. Answers to such questions are beyond the scope of
the current paper, but our aim here is to show that they are meaningful and
real.

Section 2 presents the structure of our gambles and the Choquet model.
The main results are given in section 3. Our results do not extend to some
other models, for example, the maxmin expected utility model (Gilboa and
Schmeidler [12]) or to the smooth recursive utility model (Klibanoff, Mari-
nacci, and Mukerji [15]). We show this in section 4. We discuss some further
issues and the literature in section 6. All claims are proved in the appendix.

2 Setup

An urn contains Γ balls of γ colors. One ball is picked at random, and state of
nature si is that color i is picked. Denote S = {s1, . . . , sγ}, and define Σ = 2S.
The number of balls of some colors may be known to be Γ/γ, making the
corresponding states of nature probabilistic with probability 1

γ
.1 This ratio

also serves as an anchor for non prbabilistic states and events. For example,
in the 3-color Ellsberg [3] urn which contains 90 balls, of which 30 are red
and each of the other 60 is either black or yellow, the anchoring probabilities

1There are always at least two probabilistic events, ∅ and S.
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are 1
3

for each of the three colors and 2
3

for each of complementing events.2

For more on the anchoring probabilities, see Fox and Tversky [10], Nau [20],
Chew and Sagi [2] and Ergin and Gul [6]. For E = {si1 , . . . , si`} ∈ Σ, let
P (E) = `

γ
.

Assume now the existence of a sequence of such urns. Let Si = S be the
set of states in urn i with the corresponding algebra Σi = Σ. The information
regarding each of these urns is the same. Moreover, the outcome or even the
mere existence of any urn doesn’t change the decision maker’s information
regarding any other urn. Finally, let Sn = S1 × . . .× Sn and Ωn = 2S

n
. For

E ∈ Ωn, define P n(E) to be the number of sequences in E divided by γn.
Consider a non-degenerate act L = (x1, E1; . . . ;xm, Em) where x1, . . . , xm

∈ <, x1 6 . . . 6 xm, x1 < xm, and E1, . . . , Em is a partition of Σ. Define the
anchor lottery X = (x1, p1; . . . ;xm, pm) where pi = P 1(Ei) := P (Ei) is the
anchor probability of Ei. Denote the expected value of X by µ. The gamble
Ln is the sequence of gamble L played once on each of the n urns. We assume
that the decision maker is interested in the total sum of outcomes he wins
but not in the order or the composition of colors leading to these wins and
will therefore view Ln as (xn1 , E

n
1 ; . . . ;xnkn , E

n
kn

), where xn1 = nx1 6 . . . 6
xnkn = nxm and En

i is the collection of sequences of events from Σ1, . . . ,Σn

such that the sum of their corresponding outcomes is xni . The lottery Xn =
(xn1 , p

n
1 ; . . . ;xnkn , p

n
kn

) is a sequence of n independent lotteries of type X where
pni is the anchor probability P n of En

i . The lottery Xn serves as a natural
anchor for Ln.

Consider now a decision maker having preferences �n over Ln, the space
of all real acts over Ωn. We assume that the decision maker evaluates lotteries
with known probabilities using expected utility theory with the vNM function
u. Denote by cn the certainty equivalent of Xn, that is, the number satisfiying
u(cn) = EU(Xn). One can view E[Xn]−cn = nµ−cn as the risk premium the
decision maker is willing to pay for trading the lottery Xn for its expected
value. Likewise, we define dn to be the certainty equivalent of Ln, satisfying
dn ∼n Ln and the ambiguity premium to be the sum the decison maker is
willing to pay out of the expected value of the anchor lottery Xn in order to
avoid playing Ln, that is, E[Xn]− dn = nµ− dn.

In a famous article, Samuelson [24] showed that the risk premium, or even

2More complicated urns are also possible, for example, an urn containing 100 balls.
Twenty of which are yellow, and each of the others is either red or green. The anchoring
probabilities for (Y,R,G) are ( 1

5 ,
2
5 ,

2
5 ), but this situation can easily be described as an urn

containing balls of five colors.
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the risk premium per gamble, µ− cn

n
, do not necessarily go down to zero as

n increases to infinity. Since the ambiguity premium is positive, it is obvious
that the total premium paid to trade an ambiguous lottery for its expected
value too does not have to go to zero as n increases. But we are interested
in a different question: What happens to the ambiguity premium per urn
the decision maker is willing to pay to avoid the ambiguous act Ln, beyond
what he is willing to pay to avoid the non-ambiguous, probabilistic lottery
Xn? The aim of this paper is to investigate the connection between lim

n→∞
dn

n

and lim
n→∞

cn

n
.

We analyze this connection for a given prospect L and its corresponding
lottery X.

3 Choquet Expected Utility (CEU)

In this section we consider preferences over ambiguous prospecets that can be
represented by the CEU model (Schmeidler [26]). According to this theory,
there are utility functions un : < → < and a capacities νn : Ωn → [0, 1] such
that νn(∅) = 0, νn(Sn) = 1, and the value of Ln, CEUn(Ln), is

un(xnkn)νn(En
kn) +

kn−1∑
i=1

un(xni )

[
νn

(
kn⋃
j=i

En
j

)
− νn

(
kn⋃

j=i+1

En
j

)]
(1)

We assume that all the utility functions u1, . . . , un are the same and
denote them u. Also, we assume that the decision maker is risk averse (hence
his vNM utility u is concave) and ambiguity averse in the sense that he prefers
playing Xn to playing Ln. To ensure ambiguity aversion we assume that
νn(E) 6 P n(E) for all E ∈ Ωn, which is equivalent to P n ∈ Core(νn). Note
however that we do not require the capacities νn to be convex.3 For exact
definitions and analysis of these concepts, see Ghirardato and Marinacci [11]
and Chateauneuf and Tallon [1]. See also Machina and Siniscalchi [18].

Ambiguity aversion realizes that the union of two ambigous events can be
non-ambiguous. For example, in the 3-color Ellsberg urn, the union of the
two ambigous colors leads to an event with probability 2

3
. The contribution

of an event to the value of a gamble can therefore be larger than its anchor
probability. If there is only a finite number of events, then there is of course

3Convexity of the capacity ν means that ν(E) + ν(E′) 6 ν(E ∪ E′) + ν(E ∩ E′).
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an upper bound to the ratio between the contribution of the capacities gen-
erated by all events and their probabilities. Our main requirement is that
the following boundedness condition holds uniformally for all n, that is, that
the potential over-estimation of the contribution of all events will not go to
infinity. Formally:

Boundedness There is K such that for all n and for all disjoint events
E,E ′ ∈ Ωn, νn(E ∪ E ′)− νn(E) 6 KP n(E ′).

This definition is satisfied in a trivial way if the capacity is a probabil-
ity function and the decision maker is an expected utility maximizer. The
following example show that

Example 1 Assume urns with 100 balls each of two colors, G and R. When
there are n urns, there are 2n possible outcomes of the samples (that is,
{G,R}n), with typical elements s = (s1, . . . , s2n), where for all i, si ∈ {G,R}.
The anchor probability P n of each event E is |E|2−n. Define capacities νn

by

νn(E) =

{
0 |E| 6 2n−1

|E|−2n−1

2n−1 |E| > 2n−1

Let K = 2. By definition, νn(E ∪ E ′)− νn(E) 6 |E′|
2n−1 = KP n(E ′). �

Following the discussion of the last section, consider the given non-degener-
ate random variable L with the anchoring lottery X, and suppose that the
decision maker is using the CEU model for ambiguous random variables.
Our analysis yields different results when the expected value of X is zero
and when it is positive. Consider first the case E[X] = 0. A risk averse deci-
sion maker will reject it. And if he dislikes ambiguity and ambiguity is added
to the risk, then such a decision maker will certainly reject an ambigous ran-
dom variable L. The next theorem shows that the average risk premium and
the average ambiguity premium converge to the same limit (which may be
strictly negative or zero). Its proof, as well as all other proofs, are in the
appendix.

Theorem 1 Consider an ambiguous act L with the anchor lottery X such
that E[X] = 0. Suppose that the CEU decision maker is risk averse, ambi-
guity averse, and satisfies boundedness. Then lim

n→∞
dn

n
= lim

n→∞
cn

n
.
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Stricter results can be obtained if further assumptions are made regarding
the boundedness of the utility function u. As was shown by Fishburn [9,
Section 14.1], Savage’s [25] axioms imply that the utility function has to be
bounded, both from above and from below.

Proposition 1 Suppose that the CEU decision maker is ambiguity averse
and satisfies boundedness. If u is bounded from above and from below, then
lim
n→∞

cn

n
= lim

n→∞
dn

n
= 0.

Consider now a different case, where E[X] > 0. This of course doesn’t
mean that the decision maker would like to play X, or even that if he would
like to play it once he would like to play it n times. And it may certainly
happen that he would like to play X, but will decline the corresponding
random variable L. For example, the decision maker may accept the lottery
(−100, 1

2
; 110, 1

2
), yet decline the gamble where in the two-color Ellsberg urn

he wins 110 if he correctly guesses the color of the drawn ball, but loses 100
if he does not. Nevertheless, if for all n, cn > 0, then the limit of dn

n
is

non-negative. Note that this theorem does not require ambiguity aversion.

Theorem 2 Consider an ambiguous act L with the anchor lottery X such
that E[X] > 0. Suppose that the CEU decision maker is risk averse and
satisfies boundedness. If there exists n0 such that for all n > n0, cn > 0,
then lim

n→∞
dn

n
> 0.

Here too, stricter results can be obtained with further restrictions on the
utility function u. Assume first that u is bounded from above, which is
used to avoid phenomena in the spirit of the famous St. Petersburg paradox.
Proposition 2 shows that if lim

n→∞
cn

n
> 0, then not only is the average certainty

equivalent of Ln asymptotically non-negative, but from a certain point on the
ambiguos acts Ln become stricly desirable.

Proposition 2 Under the assumptions of Theorem 2, if u is bounded from
above and lim

n→∞
cn

n
> 0, then there exists n∗ such that ∀n > n∗, Ln � 0.

The next proposition strengthens Theorems 1 and 2 to general lotteries
X where u is exponential, thus representing constant risk aversion.
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Proposition 3 Suppose that the CEU decision maker is risk averse, ambi-
guity averse, and satisfies boundedness. If u is exponential, then lim

n→∞
cn

n
=

lim
n→∞

dn

n
.4

How restrictive is the boundedness assumption? Formally, are there any
bounded capacities that are not expected utility (and therefore, in particular,
are different from the anchor probabilities)? And if there are such capacities,
does boundedness imply that νn converges to a capacity ν with a degenerate
core, which is equal to the anchor probability measure? If this is the case,
then the boundedness assumption makes the analysis trivial, because the
limit of the capacities νn is just the anchor probability vector. Example 1
shows however that this is not the case. There are non expected utility
bounded capacities for which the core does not converge to a singleton.

Example 1 (cntd) For s ∈ Sn, define

P̃ n(s) =


0 |{i : si = G}| < n

2

0 |{i : si = G}| = n
2

and s1 = G
1

2n−1 otherwise

For each E ∈ Ωn, define P̃ n(E) =
∑

s∈E P̃
n(s). For every E,

P̃ n(E) > 2

(
|s : s ∈ E|

2n
− 1

2

)
= νn(E)

Hence P̃ n is in the core of νn and clearly P̃ n and P n do not converge to the
same limit. �

Theorems 1 and 2 do not always hold without the boundedness assump-
tion. For Theorem 1, Let νn(E) = 1−

√
1− P n(E). This sequence does not

satisfy the boundedness assumption. To see why, let En′ = {(G, . . . , G)} and
let En = ¬En′. We obtain

νn(En ∪ En′)− νn(En) = 1−

(
1−

√
1− 2n − 1

2n

)
=

1√
2n

4A sufficient condition for boundedness from above is that the Arrow-Pratt measure of
absolute risk aversion is bounded away from 0. That is, that there exists δ > 0 such that
for all z, ru(z) = −u′′(z)/u′(z) > δ. To see it, let v(z) = −e−δz. Then ru(z) > rv(z) and,
by Pratt [22], there exists a concave h such that u = h ◦ v. The boundedness of u follows
from that of v.
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The ratio between this difference and 2−n, the probability of En′, is
√

2n,
which is not bounded by any K.

Consider a CEU decision maker with the utility function u(x) = 1− e−x
and the above capacities who is facing the ambiguous act L = (−0.5, E1; 0.5,
E2) with the anchor lottery X = (−0.5, 1

2
; 0.5, 1

2
). Calculating cn and dn

yields lim
n→∞

cn

n
= −0.1201 while, lim

n→∞
dn

n
< −0.21. The same functions ap-

plied to the act L = (−.35, E1; 0.65, E2) with the anchor lottery X =
(−0.35, 1

2
; 0.65, 1

2
) yield lim

n→∞
dn

n
= −0.068 < 0 while for all n, cn

n
= 0.030 > 0

show that Theorem 2 does not hold for all non-Lipschitz functions.
Boundedness is sufficient for theorem 1, but not necessary. Let νn(E) =

P n(E) − (1 − P n(E)) ln(1 − P n(E)) which can be shown to be unbounded
using the same events En and En′ as before. Yet numerical analysis shows
that when u(x) = x, for the ambiguous act L with the anchor lottery X =
(−1, 1

2
; 1, 1

2
), lim

n→∞

[
cn

n
− dn

n

]
= 0.

The boundedness of u is required for Proposition 2 as without it it is
possible to have lim

n→∞
cn

n
> 0 while for every n∗ there is n > n∗ such that

dn = 0. See Example 3 in the Appendix.

4 Maxmin EU

Gilboa and Schmeidler [12] suggested the folowing maxmin expected utility
(MEU) theory. Under ambiguity, the decision maker behaves as if he has a
(convex) set of possible probability distributions as well as a utility function
u. For each gamble he computes the values of the expected utility of u with
respect to the different possible probability distributions, and evaluates the
gamble as the minimum of all these values.

Consider the following example, where each of n urns contains the same
number of balls and each of them contains two colours, red and green. The
ambiguous act L is (−1, G; 1, R), with the corresponding anchor lottery X =
(−1, 1

2
; 1, 1

2
). Let s < 1

2
, and assume that there are two possible priors for the

proportion of green and red balls: (1− s, s) (the bad urn) and (s, 1− s) (the
good urn).5 The compositions of the n urns are statistically independent.
Following the notation of Section 2, for i = 1, . . . , n + 1, the decision maker

5The results of this section hold even when the basic set of priors Q is the entire interval
[(1− s, s), (s, 1− s)], and not just its end points.
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wins 2i−n−2 if En
i happens, which is the event “i−1 red balls and n− i+1

green balls were drawn from the n urns.”
A profile of the n urns is an ordered list of the ‘good’ and ‘bad’ urns. There

are 2n such profiles, and each of them will induce a probability distribution
over En = {En

1 , . . . , E
n
n+1}. Observe that two profiles with the same number

of ‘good’ urns induce the same probability distribution. In other words, the
decision maker has n+1 possible priors over En, one for each possible number
of ‘good’ urns, which is an integer between zero and n. Denote this set of
priors Qn.

Unlike the conclusions of Theorems 1 and 2 with respect to the CEU
model, in the MEU model the average dn

n
does not necessarily converge to the

average cn

n
when E[X] = 0, nor does it become non-negative when cn

n
> 0.

First, consider Theorem 1. If the decision maker is risk neutral (that is,
u(x) = x), then cn ≡ 0 ≡ cn

n
. But as the worst possible prior results from

a profile in which all n urns are ‘bad’ (that is, in each one of them the
proportion of red balls is s < 1

2
), the MEU value of playing the n urns is

n[s − (1 − s)] = n[2s − 1], and since u is linear this is also the value of
dn. It follows that lim

n→∞

[
cn

n
− dn

n

]
= 1 − 2s > 0. To see that Theorem 2

does not hold, consider the ambiguous act L = (−1 + a,G; 1 + a,R) with
the corresponding risky lottery X = (−1 + a, 1

2
; 1 + a, 1

2
), and assume that

0 < a < 1− 2s. Then cn

n
= a > 0 while dn

n
= 2s− 1 + a < 0.

There is a connection between the MEU and CEU models. A capacity ν
is convex if for all E,E ′, ν(E)+ν(E ′) 6 ν(E∪E ′)+ν(E∩E ′). For a convex
capacity ν, the core Cν of ν is the set of all distributions such that for every
E, Q(E) > ν(E). The CEU preferences with the capacity ν are the same
as the MEU preferences when the set of possible priors is the core of ν (see
Schmeidler [26]). Moreover, for every E, ν(E) = minQ∈Cν{Q(E)}.

Define a capacity νn by νn(En
i ) = minQ∈Qn{Q(En

i )}. Since MEU and
CEU are equivalent when the capacity is convex, it follows by the above
inequality that the boundedness assumption cannot be satisfied. To see why,
let En′ = En

0 , the event “all drawn balls are green.” Let En = ¬En′, the event
“having at least one red ball.” The probability of this event is minimized
when all urns are ‘bad’ (that is, in all of them there are more green balls
than red). In this case, the probability of En

0 is (1− s)n, and the probability
of ¬En

0 is 1− (1− s)n, which is νn(¬En
0 ). Recall that the anchor probability
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of G is 1
2
, hence

νn(En ∪ En′)− νn(En)

P n(En′)
=

1− νn(¬En
0 )

0.5n
=

(1− s)n

0.5n

Since s < 1
2
, this ratio is unbounded in n.

Remark: Checking for convexity of νn is not trivial. But consider an ex-
treme case — each urn contains one ball, either red or green. In this case
s = 0 and if the decision maker is willing to consider all possible scenarios
then the derived capacity from the multiple priors is given by νn(E) = 0
for all E 6= Sn and νn(Sn) = 1 (Sn is the sure event). These capacities are
trivially convex.

The MEU decision maker is uncertain about the composition of a single
urn and therefore, being pessimistic, considers only unfavorable composi-
tions. If he believes that all urns are independent, then the most unfavorable
coposition is that in all of them there are more green balls than red. It is
therefore not surprising that his ambiguity premium will not disappear.

The beliefs that all urns are ‘bad’ may be understandable when the deci-
sion maker is facing two or three urns. But when he is facing many urns, is
it reasonable for him to believe that in all of them there are more green balls
than red? Such beliefs require an extreme degree of pessimism, and seem
less reasonable when more urns are involved.

It is more reasonable to assume that at the presence of many urns, the
cautious decision maker may fear that he is unlucky, but not to the extreme
level of facing a sequence of urns that are all ‘bad.’ Suppose for example that
he believes that at least t < 1

2
proportion of the urns are ‘good.’ This will

require a different definition of the basic events, but it turns out that this
will not solve the problem. We show that even if these beliefs lead to CEU
preferences, the boundedness assumption must be violated, and lim

n→∞
[ c
n

n
− dn

n
]

may be strictly negative.
Consider the events En

0 and ¬En
0 . Since beliefs are now on the proportion

of ‘good’ and ‘bad’ urns, the anchor lottery is obtained from the case where
exactly half of the urns are ‘good’ and half are ‘bad.’ In this case, the anchor
probability of En

0 , that is, of drawing no red balls, is [s(1−s)]n/2. To calculate
ν(¬En

0 ), note that the worst possible scenario for the decision maker is that
only t proportion of the urns are ‘good.’ In that case the probability that
green balls will be drawn from all the tn ‘good’ urns and from all the (1− t)n
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‘bad’ urns is stn(1− s)(1−t)n. We obtain

νn(En ∪ En′)− νn(En)

P n(En′)
=

1− νn(¬En
0 )

[s(1− s)]n/2
=

stn(1− s)(1−t)n

[s(1− s)]n/2
=

(
1− s
s

)( 1
2
−t)n

Since s < 1
2
, this last expression is unbounded.

Continuing with the main example of this section, we show next that
lim
n→∞

cn

n
= 0 while lim

n→∞
dn

n
< 0, thus proving that the conclusion of Theorem 1

does not hold. It is indeed easy to verify that when u is linear, cn ≡ cn

n
≡ 0.

The value of dn is computed with respect to the worst possible scenario, when
only t proportion of the urns are ‘good.’ Using the Binomial distribution we
obtain that the expected value of the ambiguous lottery is dn = n[t(1−2s)+
(1− t)(2s− 1)] = n(2t− 1)(1− 2s), hence lim

n→∞
dn

n
= (2t− 1)(1− 2s). Since

t < 1
2
, this limit is negative.

5 The Smooth Model

Klibanoff, Marinacci, and Mukerji [15] suggested the following smooth case
of the recursive model [27]. According to their model, the decision maker
has a set of possible probability distributions, and he attaches a probability
to each of them. He computes the certainty equivalent of the uncertain
act using expected utility with the vNM function u for each of the possible
distributions, and then evaluates the lottery over these values using the vNM
function φ. Ambiguity aversion in this model is reflected by φ being more
concave than u. Ambiguity neutrality is obtained when φ and u are the same.

Formally, let L = (x1, E1; . . . ;xm, Em) be an ambiguous act, and de-
note p = (p1, . . . , pm). The decision maker believes that with probability µi,
i = 1, . . . , `, the probability distribution of L is given by pi = (pi1, . . . , p

i
m).

Denote Xpi = (x1, p
i
1; . . . ;xm, p

i
m) and let p =

∑`
i=1 µ

ipi. Hence, X =

(x1, p1; . . . ;xm, pm) =
∑`

i=1 µ
iXpi is the anchor lottery of L. The value of
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L under the smooth model is given by 6

SMφu(L) =
∑̀
i=1

µi · φ ◦ u−1
(
EUu(Xpi)

)
When there is no ambiguity (that is, the decision maker believes that with
probability 1 the probability distribution of X is p), then the value of X is
φ◦u−1(EUu(X)) which represents the same order as EU with the vNM utility
u. Note that EUu(X) is the value attached to L by an ambiguity neutral
desicion maker for whom φ = u. To see why, observe that

SMuu(L) =
∑̀
i=1

µi · EUu(Xpi) = EUu
(∑`

i=1µ
iXpi

)
= EUu(X)

The certainty equivalents are defined by u(c1) = E[u(X)] and φ(d1) =
SMφu(L).7 We have

u(c1) = EUu(X) =
∑̀
i=1

µi · EUu
(
Xpi
)

On the other hand,

φ ◦ u−1(u(d1)) = φ(d1) =
∑̀
i=1

µi · φ ◦ u−1
(
EUu

(
Xpi
))

Assuming ambiguity aversion implies that φ◦u−1 is concave, hence it follows
by the definition of risk aversion for expected utility theory that u(d1) 6
u(c1), hence d1 6 c1.

As before, let Xn and Ln be n-repetitions of X and L. The value of Xn

and its certainty equivalent cn are given by u(cn) = EUu(Xn).
Consider Ln, which is a sequence of n repetitions of L. A typical possible

beliefs of the nature of this sequence is a list of n lotteries, each taken from the
set {Xp1 , . . . , Xp`}, where Xpi appears ji times, i = 1, . . . , `, and

∑
i ji = n.

The probability of such a sequence is the product of the corresponding µi

6Since this model is using two different vNM functions, we add a superscript index (u
or φ) to indicate the utility function used in the EU operator.

7The certainty equivalent of the smooth model is computed using φ since
SMφu(x, s1; . . . ;x, sn) = φ(x).
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probabilities, that is,
∏

i (µ
i)
ji . There are (`)n (` to the power of n) such

possible sequences, denote them {Y n
j }

(`)n

j=1 and denote their corresponding
probabilities µnj . We thus obtain that

SMφu(Ln) =

(`)n∑
j=1

µnj · φ ◦ u−1(EUu(Y n
j )) (2)

and φ(dn) = SMφu(Ln).
The next theorem presents conditions under which the results of Theo-

rem 1 hold for the smooth model. Under risk and ambiguity aversion, if the
concavity of u and φ converge to the same limit as x→ −∞, then the limits
of the averages of the risk and the ambiguity certainty equivalents are the
same.

Theorem 3 Consider an ambigous act L with the anchor lottery X such
that E[X] = 0. Suppose that the SM decision maker is both risk and ambi-

guity averse and that lim
x→−∞

φ′′(x)
φ′(x)

= lim
x→−∞

u′′(x)
u′(x)

. Then lim
n→∞

dn

n
= lim

n→∞
cn

n
.

Although φ′′(x)
φ′(x)

≡ u′′(x)
u′(x)

implies that φ is an affine transformation of u, the

restriction lim
x→−∞

φ′′(x)
φ′(x)

= lim
x→−∞

u′′(x)
u′(x)

does not imply that in the limit φ is an

affine transformation of u.

Example 2 Let u(x) = x and

φ(x) =


1−(x−1)2

2
x 6 0

√
2x+ 1− 1 x > 0

The function φ is continuous and twice differentiable, where

φ′(x) =

 1− x x 6 0

1√
2x+1

x > 0
φ′′(x) =

 −1 x 6 0

− 1

(2x+1)3/2
x > 0

Obviously, u′′

u′
≡ 0 and lim

x→−∞
φ′′(x)
φ′(x)

= 0, yet φ is nowhere an affine trans-

formation of u. In fact, for x < 0, φ is quadratic while u is everywhere
linear.
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Proposition 2 analyzed conditions under which, under the CEU model,
Ln � 0. The next proposition offers conditions for a similar result under the
SM model.

Proposition 4 Consider an ambigous act L with the anchor lottery X such
that E[X] > 0. Suppose that the SM decision maker is both risk and am-

biguity averse and that lim
x→−∞

− φ′′(x)
φ′(x)

= 0. Then there exists n∗ such that

∀n > n∗, Ln � 0.

Theorem 3 assumes that lim
x→−∞

− φ′′(x)
φ′(x)

= lim
x→−∞

− u′′(x)
u′(x)

. The next theo-

rem shows that if lim
x→−∞

− φ′′(x)
φ′(x)

> 0, then there is always a sufficiently low

upper bound of u under which the limits of the averages of the risk and the
ambiguity certainty equivalents are not the same.

We say that the risk aversion of utility function u is bounded from above
[from below] by ζ if for all x, −u′′(x)/u′(x) is less than [more than] ζ. The
next result shows that if the degree of risk aversion of φ is bounded from
below by t > 0, then for u with degree of risk aversion that is bounded from
above by a sufficienty small s, the limit of the average premium, dn

n
is strictly

less than the limit of the average risk premium, cn

n
.

Theorem 4 Consider an ambigous act L with the anchor lottery X such
that E[X] = 0. Suppose that the SM decision maker is ambiguity averse and
that the risk aversion of φ is bounded from below by t > 0. Under these
assumptions there is s > 0 such that if the risk aversion of u is bounded from
above by s, then lim

n→∞
dn

n
< lim

n→∞
cn

n
.

Theorem 5 Consider an ambiguous act L with the anchor lottery X. Sup-
pose that the SM decision maker is strictly ambiguity averse and that both
φ and u are exponential. Then

lim
n→∞

dn

n
< lim

n→∞

cn

n

6 Discussion

As early as 1961 did William Fellner [7, pp. 678–9] ask: “there is the question
whether, if we observe in him [the decision maker] the trait of nonadditivity,
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he is or is not likely gradually to lose this trait as he gets used to the uncer-
tainty with which he is faced.” Fellner pointed out a fundamental problem
in answering this question empirically: In an experiment, decision makers
may understand that the ambiguity is generated by a randomization mecha-
nism and is therefore not ambiguous, but this is not necessarily the case with
processes of nature or social life.

Our analysis shows that a lot depends on the way we choose to model
ambiguity. But at least within CEU, ambiguity aversion disappears if the
decision maker is faced with many similar ambiguous situations. The term
“similar” is of course not well defined, but loosely speaking, our analysis
shows that even though decision makers don’t learn anything new about
the world as they face repeated ambiguity, they may still learn not to fear
this lack of knowledge. So the doctor of the introduction may learn after
seeing many patients to look at the anchoring probability as a guideline for
her repeated medical decisions, but it may still be the case that she’ll avoid
ambiguity and prefer to take risk with known probabilities on her first trip
out of the country, even if the anchoring probabilities of the ambiguous option
are better than the risky one.

Theorem 1 does not claim that overall ambiguity aversion disappears. It
doesn’t even rule out the possibility that as the number of incidents n grows,
the difference between the certainty equivalents of the anchoring probabilistic
lottery and the ambiguous gamble may be unbounded. Similarly, Theorem 2
permits the certainty equivalent of the ambiguous gamble to be unboundedly
negative. Both theorems deal with the certainty equivalents per case. An
alternative way to analyze attitudes per case is to divide the gamble Ln and
the anchoring lottery Xn by n. The probabilistic lottery will then converge
to its average. Maccheroni and Marinacci [17] proved that as n → ∞, the
capacity of the event “the average outcome of the ambiguous act L is between
its CEU (with the linear utility u(x) = x) and minus the CEU value of
−L” is one. Similarly to this extension of the law of large numbers, the
central limit theorem of the classical probability was also extended to the
uncertainty framework. This was done by Marinacci [19], who used a certain
set of capacities, and by Epstein, Kaido, and Seo [5], who made use of belief
functions. The latter authors also studies confidence regions.

Very few experiments checked attitudes to repeated ambiguity (although
it seems that several more are currently being conducted). Liu and Col-
man [16] report that participants chose ambiguous options significantly more
frequently in repeated-choice than in single-choice. This suggests that repeti-
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tion diminishes the effect of ambiguity aversion. Filiz-Ozbay, Gulen, Masatli-
oglu, and Ozbay [8] report that ambiguity aversion diminishes with the size
of the urn. The intuition behind their result agrees with our finding, since
both are based on the idea that the more options there are (number of balls
to draw from an urn/number of urns) the less plausible is the extreme pes-
simistic view that Nature always acts against the decision-maker. Halevy
and Feltkamp [13] and Epstein and Halevy [4] conducted experiments that
involve drawing from two urns and report that when no information regarding
the dependence between the urns is provided, individuals display ambiguity
aversion with respect to it. Since we assume that urns are independent, this
type of ambiguity is not relevant to the current work.

Other models imply a connection between the CEU and the EU mod-
els. Klibanoff [14] studied the relation between stochastic independence and
convexity of the capacity in the CEU model and found that together they
imply EU (hence the capacity must be additive). His results are not related
to ours since we do not assume stochastic independence and, furthermore,
the capacities we analyse are not required to be convex.

Appendix: Proofs

Given the anchor lottery Xn = (xn1 , p
n
1 ; . . . ;xnkn ; pnkn), define fn : [0, 1]→ [0, 1]

such that fn(0) = 0, for i = 1, . . . , kn,

fn

(
kn∑
j=i

pnj

)
= νn

(
kn⋃
j=i

En
j

)
(3)

and let fn be piecewise linear on the segment [0, pnkn ] and on the segments

[
∑kn

j=i+1 p
n
j ,
∑kn

j=i p
n
j ], i = 1, . . . , kn − 1. Note that by ambiguity avresion

for all E, ν(E) 6 Pr(E), hence by the piece-wise linearity of fn, we have
fn(p) 6 p. Eq. (1) thus becomes

CEUn(Ln) = un(xnkn)fn(En
kn) +

kn−1∑
i=1

un(xni )

[
fn

(
kn⋃
j=i

En
j

)
− fn

(
kn⋃

j=i+1

En
j

)]

Denote by FZ the distribution of lottery Z. In the sequal we use the
integral versions of the expected utility and the CEU models. Also, we use
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the cummulative (rather than the decummulative) version of the CEU model,
defining gn(p) = 1− fn(1− p), to obtain

EU(Xn) =

∫
u(z)dFXn(z)

CEU(Ln) =

∫
u(z)dgn(FXn(z)) (4)

Observe that by the boundedness assumption, for each n, gn is Lipschitz with
K. Also, as for all p, fn(p) 6 p, it follows that for all p, gn(p) > p.

Fact 1 Let u(x) = −e−ax. Then for lotteries X1, . . . , Xk, EU(
∑k

i=1 Xi) =

u(
∑k

i=1 CE(Xi)), where CE(X) is the certainty equivalent of X. In particu-
lar, for all n, cn

n
= c1.

Proof: Assume wlg that all lotteries have the same possible outcomes, that
is, Xi = (x1, pi1; . . . ;xr, pir), i = 1, . . . , k. Denote Yt =

∑t
i=1Xi. We show

by induction that
∫
e−azd(FYk(z)) =

∏k
i=1

∫
e−azdFXi(z)). Indeed,∫

e−azd(FYk(z)) =
r∑
j=1

pkj

∫
e−azd(FYk−1+xj(z))

=
r∑
j=1

pkje
−axj

∫
e−azd(FYk−1

(z)) =

∫
e−azd(FYk−1

(z))

(
r∑
j=1

pkje
−axj

)

=
k−1∏
i=1

∫
e−azdFXi(z))×

∫
e−azdFXk(z)) =

k∏
i=1

∫
e−azd(FXi(z))

Therefore

EU(Yk) = −
∫
e−azd(FYk(z)) = −

k∏
i=1

∫
e−azdFXi(z))

= −
k∏
i=1

e−aCE(Xi) = −e−a(
∑k
i=1 CE(Xi)) = u

(∑k
i=1CE(Xi)

)
�

Proof of Theorem 1: We prove the theorem through a sequence of claims.
Assume throughout, wlg, that u(0) = 0 and u′(0) = 1.
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Claim 1 If lim
x→−∞

u′(x) =∞, then

lim
n→∞

∫
x>0

u(x) dFXn(x)

/∫
x<0

u(x) dFXn(x) = 0

Proof : Let y(µ) = sup{y 6 0 : u(y) < µy}. Since lim
x→−∞

u′(x) =∞, it

follows that y(µ) is finite. By the Central Limit Theorem, as n → ∞, the
probability that Xn will be in any finite segment goes to 0 yet the probability
that it is negative goes to 1

2
. hence Pr{Xn < u−1(µx)} −→

n→∞

1
2
.

Since for positive x, u′(x) 6 1, it follows that for such x, u(x) 6 x.
Therefore ∫

x>0

u(x) dFXn(0)∫
x<0

u(x) dFXn(x)
>

∫
x>0

xdFXn(x)∫
x<0

u(x) dFXn(x)

Since E(Xn) = 0, it follows that
∫
x<0

x dFXn(x) = −
∫
x>0

x dFXn(x). There-
fore ∫

x>0

x dFXn(x)∫
x<0

u(x) dFXn(x)
=

−
∫ 0

y(µ)

x dFXn(x)−
∫
x<y(µ)

x dFXn(x)∫ 0

y(µ)

u(x) dFXn(x) +

∫
x<y(µ)

u(x) dFXn(x)

>

−
∫ 0

y(µ)

x dFXn(x)−
∫
x<y(µ)

x dFXn(x)∫ 0

y(µ)

u(x) dFXn(x) + µ×
∫
x<y(µ)

x dFXn(x)

−→
n→∞

− 1

µ

This is true for every µ > 1, hence the claim. �

Claim 2 Suppose that lim
x→−∞

u′(x) =∞. Then for EU with u and CEUn

with u and fn, lim
n→∞

CEUn(Ln)
EU(Xn)

6 K.
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Proof : We obtain by claim 1 that

CEUn(Ln)

EU(Xn)
6∫

x<0
u(x)(gn)′(FXn(x)) dFXn(x)

EU(Xn)
6

K
∫
x<0

u(x) dFXn(x)

EU(Xn)
→ K �

Claim 3 If lim
x→−∞

u′(x)/u(x) < −` < 0, then lim
n→∞

[
cn

n
− dn

n

]
= 0.

Proof : Since u is concave, u(cn) < 0. It follows by claim 2 that for n > n0,
u(dn) > (K + 1)u(cn). It follows by the concavity of u and by the fact that
dn 6 cn that

u(cn)− u(dn)

cn − dn
> u′(cn)

hence for n > n0,

cn − dn 6 u(cn)− u(dn)

u′(cn)
6 −Ku(cn)

u′(cn)

Since u is concave, lim
x→−∞

u(x) = −∞, and as lim
x→−∞

u′(x)/u(x) < −` < 0, it

follows that lim
x→−∞

u′(x) = ∞. By Fact 2 below, lim
n→∞

cn = −∞, hence for a

sufficiently large n,

−Ku(cn)

u′(cn)
6
K

`

Therefore

0 6
cn

n
− dn

n
6
K

`n
−→
n→∞

0

It thus follows that lim
n→∞

[
cn

n
− dn

n

]
= 0, which is the claim. �
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Fact 2 If lim
x→−∞

u′(x) =∞, then lim
n→∞

cn = −∞.

Proof : We show that for every integer m < 0, lim
n→∞

EU(Xn) 6 u(m − 1).

The value of EU(Xn) equals

∫
x62(m−1)

u(x) dFXn(x)

1 +

0∫
2(m−1)

u(x) dFXn(x)∫
x62(m−1)

u(x) dFXn(x)
+

∫
x>0

u(x) dFXn(x)∫
x62(m−1)

u(x) dFXn(x)


Again by the central limit theorem, lim

n→∞

∫ 0

2(m−1)
u(x) dFXn(x) = 0. Also, by

the same argument,

lim
n→∞

∫
x>0

u(x) dFXn(x)∫
x62(m−1)

u(x) dFXn(x)
= lim

n→∞

∫
x>0

u(x) dFXn(x)∫
x60

u(x) dFXn(x)

By Claim 1 the last limit is zero. By the Central Limit Theorem, the proba-
bility of receiving an outcome between 2(m− 1) and 0 converges to zero and
the probability of receiving a negative outcome is 1

2
. It thus follows that

lim
n→∞

∫
u(x) dFXn(x) = lim

n→∞

∫
x62(m−1)

u(x) dFXn(x) 6
u(2(m− 1))

2
6 u(m− 1)

It thus follows that lim
n→∞

cn 6 m− 1 < m. �

The next two claims deal with the case lim
x→−∞

u′(x)/u(x)→ 0.

Claim 4 If lim
x→−∞

u′(x) = H <∞, then lim
n→∞

cn

n
= lim

n→∞
dn

n
= 0.

Proof : Since for all n, dn 6 cn, it is enough to prove that lim
n→∞

dn

n
= 0. Define

v(x) = min{Hx, 0}. By assumption, u(x) > v(x) for all x. Let CEUn
v denote

the CEUn functional with respect to v. Then CEUn(Ln) > CEUn
v (Ln) and,

as above,

CEUn
v (Ln) =

∫
v(z)dgn(FXn(z))

= H

∫
z60

zdgn(FXn(z)) > KH

∫
z60

zdFXn(z)
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Let σ2 be the variance of X and nσ2 the variance of Xn. Note that
E(Xn) = 0 and choose 1

2
< α < 1. By Chebyshev’s inequality,

Pr(Xn < −nα) 6
nσ2

n2α
=

σ2

n2α−1

Assume that n is sufficiently large to satisfy nx1 < −nα. Then

KH

∫
z60

zdFXn(z) > KH

(
nx1 ×

σ2

n2α−1
− nα × 1

)
= KH

(
x1σ

2

n2(α−1)
− nα

)
=⇒

u(dn) = CEUn(Ln) > KH

(
x1σ

2

n2(α−)
− nα

)
and, since u is concave and u′(0) = 1,

dn > KH

(
x1σ

2

n2(α−1)
− nα

)
Therefore,

lim
n→∞

dn

n
> KH lim

n→∞

(
x1σ

2

n2α−1
− 1

n1−α

)
= 0 �

Claim 5 If lim
x→−∞

u′(x) =∞ but lim
x→−∞

u′(x)
u(x)

= 0, then lim
n→∞

cn

n
= lim

n→∞
dn

n
= 0.

Proof : By l’Hospital’s rule, lim
x→−∞

u′′(x)/u′(x) = lim
x→−∞

u′(x)/u(x) = 0. Con-

sider the exponential utility vε(x) = −e−εx for which −v′′ε/v′ε ≡ ε. Denote by
cnε the value of cn obtained for the function vε. By Fact 1, lim

n→∞
cnε/n = c1

ε < 0

where c1
ε, the certainty equivalent X, satisfies

−e−εc1ε =

∫
−e−εz dFX(z) =⇒ c1

ε = −1

ε
ln

[∫
e−εz dFX(z)

]
Note that, using l’Hospital’s rule and E(X) = 0, lim

ε→0
c1
ε = 0.
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As lim
x→−∞

u′′(x)/u′(x) = 0, it follows that for every ε > 0 there is x(ε) such

that for all x < x(ε), −u′′(x)/u′(x) < ε. Define a function uε as follows.

uε =

{
u(x) x 6 x(ε)

avε(x) + b x > x(ε)

where a = u′(x(ε))
v′ε(x(ε))

and b = u(x(ε)) − avε(x(ε)). Clearly uε is less risk averse

than vε, hence c1
uε > c1

ε. By Fact 3 below, lim
n→∞

cnuε/n = lim
n→∞

cn/n. We saw

that lim
n→∞

cnε/n = c1
ε, hence lim

n→∞
cn/n > c1

ε. The claim now follows by the fact

that lim
ε→0

c1
ε = 0.

Since u is concave, the fact that (for sufficiently large n) u(dn) > (K +
1)u(cn) implies that dn > (K+1)cn. As lim

n→∞
cn

n
→ 0, it follows that lim

n→∞
dn

n
→

0. �

Fact 3 If for x < M , u(x) = v(x), then lim
n→∞

cnu
n

= lim
n→∞

cnv
n

.

Proof : For M > 0, the fact follows from Claim 1. For M < 0, observe that
assuming lim

x→−∞
u′(x) =∞, the probability that Xn is between M and 0 goes

to zero with n. �

Claims 3–5 cover all possible cases of lim
x→−∞

u(x), hence the theorem. �

Proof of Theorem 2: Assume wlg that n0 = 1 and hence cn > 0 for all n.
First, assume lim

x→−∞
u′(x) = ∞. Define un(x) = u(x) − u(nxm) and note

that un(nxm) = 0 and un(x) < 0, for all outcomes of Xn. These inequal-
ities and the boundedness assumption imply that for the CEUn, the CEU
functional with respect to un,

CEUn(Ln) =

∫
un(z)dgn(FXn(z))

> K

∫
un(z)dFXn(z) > Kun(cn)

The inequality un(cn) > un(0) yields

un(dn) = CEUn(Ln) > Kun(cn) > Kun(0)
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Going back to u, noting that 1−K 6 0 and that, by concavity, u(nxm) 6
nu(xm),

u(dn) = un(dn) + u(nxm) > Kun(0) + u(nxm)

= −Ku(nxm) + u(nxm) = (1−K)u(nxm)

> n(1−K)u(xm)

Denote A = (1−K)u(xm). By assumption, A 6 0. Note that the concavity
of u and lim

x→−∞
u′(x) = ∞ imply lim

y→−∞
u−1(y)/y = 0. Then, dn > u−1(nA)

implies

lim
n→∞

dn

n
> lim

n→∞

u−1(nA)

nA
A = 0

Finally, if lim
x→−∞

u′(x) = H <∞ (u′′ < 0 implies that lim
x→−∞

u′(x) exists), then

the proof follows that of Claim 4. �

Proof of Proposition 1: If E[X] = 0 and u is bounded from above and
from below, then lim

n→∞
cn

n
= lim

n→∞
dn

n
= 0: As in the proof of Theorem 1, we

assume that u(0) = 0 and u′(0) = 1. Let û = lim
x→∞

u(x) and ǔ = lim
x→−∞

u(x).

First we show that lim
n→∞

cn

n
= 0. Choose ε > 0. Let x̌ = u−1(ǔ + ε) and

x̂ = u−1(û− ε). Then

EU(Xn) 6 Pr(Xn6 x̌)(ǔ+ ε) + Pr(x̌ < Xn < x̂)(û− ε) + Pr(Xn > x̂)û

and

EU(Xn) > Pr(Xn6 x̌)ǔ+ Pr(x̌ < Xn < x̂)(ǔ+ ε) + Pr(Xn > x̂)(û− ε)

Since lim
n→∞

Pr(x̌ < Xn < x̂) = 0 and by the Central Limit Theorem, lim
n→∞

Pr(Xn

6 x̌) = lim
n→∞

Pr(Xn > x̂) = 1
2

(here we use the fact that E[X] = 0),

ǔ+ û− ε
2

6 lim
n→∞

EU(Xn) 6
ǔ+ û+ ε

2

and since the above holds for all ε, we get

lim
n→∞

EU (Xn) =
ǔ+ û

2
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Therefore, lim
n→∞

cn = u−1
(
ǔ+û

2

)
and lim

n→∞
cn

n
= 0.

To prove that lim
n→∞

dn

n
= 0, note that the boundedness of u guarantees the

existence of 0 < L <∞ satisfying Lx < u(x) for all x < 0. Then, define

v (x) =

{
Lx x 6 0

0 x > 0

and proceed as in the proof of Claim 4. �

Proof of Proposition 2: If u is bounded from above and lim
n→∞

cn

n
> 0, then

there exists n∗ such that ∀n > nδ, L
n � 0: Without loss of generality, assume

that u(x) < 0 for all x and that lim
x→∞

u(x) = 0. Similarly to the proof of the

first part of Theorem 2,

CEUn(Ln) =

∫
u(z)dgn(FXn(z)) > K

∫
u(z)d(FXn(z)) > Ku(cn)

Choose δ that satisfies lim
n→∞

cn

n
> δ > 0 and note that for a sufficiently large n,

cn > nδ. As nδ goes to infinity, lim
n→∞

u(cn) = 0 and, by the above argument,

lim
n→∞

CEUn(Ln) = 0. This implies the existence of nδ such that for all n > nδ,

CEUn(Ln) > u(0). For these n, Ln � 0. �

Proof of Proposition 3: If u is exponential and concave and for all p,
f(p) 6 p, then lim

n→∞
cn

n
= lim

n→∞
dn

n
: Let u(x) = −e−ax, with a > 0. By Fact 1,

cn = nc1 and hence lim
n→∞

cn

n
= c1. By the definitions of c1 and dn we have

EU(X − c1) =

∫
−e−azdFX−c1(z) =

∫
−e−a(z−c1)dFX(z)

= eac
1

∫
−e−azdFX(z) = eac

1

(−e−ac1) = −1

(5)

and

CEUn
((
L− dn

n

)n)
=

∫
−e−azdgn

(
F(X− dnn )

n(z)
)

=∫
−e−azdgn(FXn−dn(z)) =

∫
−e−a(z−dn)dgn (FXn(z)) =

ead
n

∫
−e−azdgn (FXn(z)) = ead

n (−e−adn) = −1

(6)
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The sequence
{
dn

n

}∞
n=1

is bounded (since the support of X is) and, by

g(p) > p, dn

n
6 cn

n
= c1. Assume, by way of negation, that the sequence does

not converge to c1. Then, there exists ε > 0 and a subsequence
{
dnj

nj

}∞
j=1

satisfying lim
j→∞

dnj

nj
< c1 − ε. Without loss of generality, assume that for all j,

dnj

nj
< c1 − ε. Hence,

CEU
((
L− dnj

nj

)nj)
=

∫
−e−azdgn

(
F(X−dnj /nj)nj (z)

)
>

∫
−e−azdgn

(
F(X−c1+ε)nj

)
(z) > −K

∫
e−azdF(X−c1+ε)nj (z)

= −K
[∫

e−azdFX−c1+ε(z)

]nj
= −Ke−anjε

[∫
e−azdFX−c1(z)

]nj
= −Ke−anjε −→

j→∞
0

where the last equality follows by eq. (5). Therefore, for sufficiently large j,

CEU
((
L− dnj

nj

)nj)
> −1

in contradiction with eq. (6). To conclude, lim
n→∞

dn

n
= c1 = lim

n→∞
cn

n
. �

Example 3 Let X = (−1
4
, 1

2
; 3

4
, 1

2
). Define ν1 = . . . by

νn(E) =

{
0 P n(E) < 1

2

2P n(E)− 1 otherwise

which is bounded with K = 2. We get

EU(X4n) =
3n∑

i=−n

(
4n

i+ n

)
1

24n
u(i) (7)

CEU(L4n) = 2
n−1∑
i=−n

(
4n

i+ n

)
1

24n
u(i) +

(
4n

2n

)
1

24n
u(n) (8)
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Let u(x) = x for x > 0. We define u(−n) inductively. Let

vn = −
−1∑

i=−n+1

(
4n

i+ n

)
u(i)−

n−1∑
i=1

(
4n

i+ n

)
i−
(

4n

2n

)
n

2
(9)

wn = 2u(−n+ 1)− u(−n+ 2)

and define u for x < 0 as follows. For n = 1, . . . , let u(−n) = min{vn, wn},
and for x ∈ (−n,−n + 1) let u(x) = u(−n) + (x + n)[u(−n + 1) − u(−n)].
The function u is strictly increasing and weakly concave.

Claim 6 lim
n→∞

u(−n)/n = −∞.

Proof : Suppose not. Then there exists A > 0 such that for all n, −u(−n)/n
6 A, and since between −n and −n + 1 the function u is linear, it follows
that for all n, −u(−n)/n 6 A.

By definition, u(−n) 6 vn, hence it follows by eqs. (8) and (9) that for
all n, CEU(X4n) 6 0. On the other hand, by eq. (8),

CEU(X4n) = 2
−1∑
i=−n

(
4n

i+ n

)
u(i)

24n
+ 2

n−1∑
i=1

(
4n

i+ n

)
i

24n
+

(
4n

2n

)
n

24n

> −(n− 1)nA

24n−1

(
4n

n− 1

)
+ 1×

[
1

2
− Pr(X4n 6 0)

]
(10)

Let βn = (n−1)nA
24n−1

(
4n
n−1

)
. Clearly

βn+1

βn
=

n(n+ 1)A24n−1
(

4n+4
n

)
(n− 1)nA24n+3

(
4n
n−1

)
=

(n+ 1)(4n+ 4)(4n+ 3)(4n+ 2)(4n+ 1)

16(n− 1)n(3n+ 4)(3n+ 3)(3n+ 2)
→ 44

16× 33
=

16

27

Hence lim
n→∞

βn = 0. Likewise, Pr(X4n 6 0) 6 n
24n

(
4n
n

)
→ 0, hence the expres-

sion of eq. (10) converges to 1
2
; a contradiction. �

Define n0 = 0, and let ni satisfy

1. u(−ni) = vni
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2. For ni−1 < j < ni, u(−j) < vj

It follows by Claim 6 that {ni} is not a finite sequence, as otherwise the
function u would become linear from a certain point on to the left and will
never intersect the line Ax for sufficiently high A.

By definition, RD(X4ni) = 0. It thus follows by eq. (7) that

c4ni(1
4
) = EU(X4ni) =

[(
4ni
2ni

)
ni
2

+

3ni∑
i=ni+1

(
4ni
i+ ni

)
i

]
1

24ni

>
ni
2
× Pr

(
X4ni > ni

)
=
ni
4

Hence lim
i→∞

c4ni/4ni >
1
16

while d4ni/4ni ≡ 0. �

Proof of Theorem 3 By ambiguity aversion, φ is more concave than u,
hence SMφφ(Ln) 6 SMφu(Ln) 6 SMuu(Ln). Let d̄n be the certainty equiva-
lent of Ln under SMφφ and note that cn is the certainty equivalent of SMuu

(since SMuu(Ln) = EUu(Xn)). Hence d̄n 6 dn 6 cn for all n and

lim
n→∞

d̄n

n
6 lim

n→∞

dn

n
6 lim

n→∞

cn

n

Using SMφφ(Ln) = EUφ(Xn), Fact 4 (see below) implies lim
n→∞

d̄n

n
= lim

n→∞
cn

n
.

Hence, lim
n→∞

dn

n
= lim

n→∞
cn

n
. �

Fact 4 Consider a risk averse EU decision maker with a utility u. Let X be
a lottery satisfying E(X) = 0 and assume that lim

x→−∞
u′′(x)
u′(x)

= a ∈ [0,∞). If

a = 0 then lim
n→∞

cn

n
= 0. Otherwise, lim

n→∞
cn

n
= ĉ where ĉ satisfies

−e−aĉ =

∫
−e−azdFX (z)

Proof of Fact 4: First assume a = 0. When limu′(x)
x→−∞

= H <∞, the result

follows from Claim 4(proof of Theorem 1). Similarly, when limu′(x)
x→−∞

= ∞,
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the result follows from Claim 5 (proof of Theorem 1; note that, by l’Hospital’s

rule, lim
x→−∞

u′′(x)
u′(x)

= lim
x→−∞

u′(x)
u(x)

= 0).

Next assume a > 0 and note that, in this case, limu′(x) =∞
x→−∞

. To see it,

note that limu′(x)
x→−∞

= H <∞must imply limu′′(x)
x→−∞

= 0 (by concavity, u′(x) is

monotonically icreasing towards H when x→ −∞) and hence lim
x→−∞

u′′(x)
u′(x)

=

0, contradicting a > 0.
Denote v (x) = −e−ax and for a any ε > 0 denote vε+ (x) = −e−(a+ε)x,

vε− (x) = −e−(a−ε)x and let ĉε+ and ĉε− satisfy

−e−aĉε+ =

∫
−e−(a+ε)zdFX (z) , −e−aĉε− =

∫
−e−(a−ε)zdFX (z)

Since vε+ is more concave than v and v is more concave than vε− , we have
ĉε+ < ĉ < ĉε− . Let ĉnε+ and ĉnε− denote the certainty equivalents of Xn under

vε+ and vε− , respectively. By Fact 1, lim
n→∞

ĉnε+
n

= ĉε+ and lim
n→∞

ĉnε−
n

= ĉε− .

As lim
x→−∞

u′′(x)
u′(x)

= a > 0, for every a > ε > 0 there is x (ε) such that for all

x 6 x(ε), a− ε < u′′(x)
u′(x)

< a+ ε. Define the functions uε+ and uε− by

uε+ (x) =


u (x) x 6 x(ε)

α+vε+ (x) + β+ otherwise

and

uε− (x) =


u (x) x 6 x(ε)

α−vε− (x) + β− otherwise

where α+ = u′(x(ε))
vε+ (x(ε))

, α− = u′(x(ε))
vε− (x(ε))

, β+ = u (x (ε)) − α+vε+ (x (ε)) and

β− = u (x (ε)) − α−vε− (x (ε)) are defined as to enable continuity and dif-
ferentiability of these functions.

Clearly, uε− is more risk averse than vε− and uε+ is less risk averse than
vε+ . Hence, cnuε+ and cnuε− , the certainty equivalents of Xn under uε+ and

uε− , respectively, satisfy ĉnε− > cnuε− and cnuε+ > ĉnε+ . Hence,

ĉε− = lim
n→∞

ĉnε−
n
> lim

n→∞

cnuε−
n

= lim
n→∞

cn

n
= lim

n→∞

cnuε+
n
> lim

n→∞

ĉnε+
n

= ĉε+
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where the equalities follow from Fact 3.
To conclude, note that both ĉε+ and ĉε− converge to ĉ when ε→ 0. �

Proof of Proposition 4: As in the proof of Theorem 3, let d̄n be the
certainty equivalent of Ln under SMφφ, which is the same as the certainty
equivalent of Xn under EUφ. By Proposition 1 in Nielsen [21], for a suffi-
ciently large n, d̄n > 0. The claim now follows from the fact that SMφφ(Ln) 6
SMφu(Ln). �

Proof of Theorem 4: If the risk aversion of φ is bounded from below by
t and u is concave, then for every n, dn 6 d̄n, where d̄n is the certainty
equivalent of Ln obtained from the functions ū(x) = x and φ∗(x) = −e−tx.

Denote zi = E(Xpi), Z = (z1, µ
1; ...; z`, µ

`) and note that

E(Z) =
∑̀
i=1

µiE(Xpi) = E
(∑`

i=1µ
iXpi

)
= E(X) = 0

If the decision maker is using φ∗ and ū, then

SMφ∗ū(L) =
∑̀
i=1

µi · φ∗ ◦ ū−1(EUū(Xpi)) =
∑̀
i=1

µiφ∗(E(Xpi))

=
∑̀
i=1

µiφ∗(zi) = EUφ∗(Z)

Also, it follows from eq. (2) that

SMφ∗ū(Ln) =
`n∑
j=1

µnj · φ∗ ◦ ū−1(EUū(Y n
j )) =

`n∑
j=1

µnj φ
∗[E(Y n

j )]

The expected value of Y n
j is the sum of the expected values of the sequence

of lotteries it represents. As there are in this sequence ji lotteries of type
Xpi , i = 1, . . . , `, the expected value of Y n

j is
∑`

i=1 jiE(Xpi). Hence

`n∑
j=1

µnj φ
∗[E(Y n

j )] =
`n∑
j=1

µnj φ
∗
[(∑`

i=1jiE(Xpi)
)]

=
`n∑
j=1

µnj φ
∗
[(∑`

i=1jizi

)]
= EUφ∗(Zn)
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Where the last equation follows by the fact that
∑`

i=1 jizi is an outcome of
the lottery Zn which is obtained from playing n times lottery Z. We obtain
that

d̄n = (φ∗)−1(SMφ∗ū(Ln)) = (φ∗)−1(EUφ∗(Zn))

And since φ∗ is exponential, Fact 1 implies d̄n

n
= d̄1 = (φ∗)−1(EUφ∗(Z)) < 0.

Consider the utility function u∗(x) = −e−sx. Since this function repre-
sents constant absolute risk aversion, it follows that for this function, the
average certainty equivalent of Xn, c̄n

n
, equals the certainty equivalent of X,

c̄1, which is given by

−e−sc̄1 = −
∑

pie
−sxi =⇒ c̄1 = − ln

(∑ pi
esxi

)/
s

As s → 0, pi/e
sxi gets close to pi, and as ln 1 = 0, the numerator converges

to zero. To compute the value of c̄1 as s → 0, use l’Hopital’s rule together
with the fact that

∑
pixi = 0 to get

lim
s→0
− ln

(∑ pi
esxi

)/
s = lim

s→0

∑
pixie

−sxi∑ pi
esxi

= 0

If u is less risk averse than u∗, then lim
n→∞

cn

n
computed with respect to u will be

at least as high as that of u∗. By the first part of the proof lim
n→∞

dn

n
6 d̄1 < 0.

The claim of the theorem now follows from the fact that for sufficiently small
s we can get c̄1 as close as we wish to zero, and in particular, for small s,
lim
n→∞

dn

n
6 lim

n→∞
d̄n

n
= d̄1 < c̄1 = lim

n→∞
c̄n

n
6 lim

n→∞
cn

n
. �

Proof of Theorem 5: By construction,

u
(
c1
)

= EUu (X) = EUu

(∑
i=1

µiXpi

)
=
∑̀
i=1

µiEUu
(
Xpi
)

and (
φ ◦ u−1

) (
u
(
d1
))

= φ
(
d1
)

=
∑̀
i=1

µi
(
φ ◦ u−1

) (
EUu

(
Xpi
))

Rewriting the equations and denoting h = φ ◦ u−1 yields
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u
(
c1
)

=
∑̀
i=1

µiEUu
(
Xpi
)

h
(
u
(
d1
))

=
∑̀
i=1

µih
(
EUu

(
Xpi
))

Let φ (x) = −e−tx and u (x) = −e−sx. By strict ambiguity aversion φ is
strictly more concave than u, which implies t > s, and hence h = φ ◦ u−1

is strictly concave (h (y) = − (−y)t/s). Therefore, these equations imply
u (d1) < u (c1) which, noting that h is increasing, yields d1 < c1.

By Fact 1, cn

n
= c1 for all n and hence lim

n→∞
cn

n
= c1. Moreover, denoting

ci = u−1
(
EUu

(
Xpi
))

and using Fact 1, any sequence of lotteries Y n
j =

(Xp1)
n1

· · ·
(
Xp`
)n`

, ni ∈ {0,N}, satisfies

EUu
(

(Xp1)
n1

· · ·
(
Xp`
)n`)

= − | EUu (Xp1) |n
1 · · · | EUu

(
Xp`
)
|n`

= −
(
e−sc1

)n1

· · ·
(
e−sc`

)n`
= −e−s(n1c1+...+n`c`)

= u
(
n1c1 + ...+ n`c`

)
Next, denoting C =

(
c1, µ

1; ...; c`, µ
`
)
, SMφu (Ln) can be written as EUφ (Cn)

for all n:

SMφu (L) =
∑̀
i=1

µiφ
[
u−1

(
EUu

(
Xpi
))]

=
∑̀
i=1

µiφ (ci) = EUφ (C)

SMφu (Ln) =

(`)n∑
j=1

µnj φ
[
u−1

(
EUu

(
Y n
j

))]
=

(`)n∑
j=1

µnj φ
[
n1c1 + ...+ n`c`

]
= EUφ (Cn)

Using d1 = φ−1
(
EUφ (C)

)
and dn = φ−1

(
EUφ (Cn)

)
, Fact 1 implies

dn

n
= d1 for all n and hence lim

n→∞
dn

n
= d1. This concludes the proof. �
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